The male mammary gland: a novel target of endocrine-disrupting chemicals

被引:10
|
作者
Szabo, Gillian K. [1 ]
Vandenberg, Laura N. [1 ]
机构
[1] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Environm Hlth Sci, Amherst, MA 01003 USA
关键词
MALE BREAST-CANCER; SEMINAL-VESICLES; ANTI-ANDROGENS; MOUSE; GYNECOMASTIA; BIOASSAY; ESTROGENICITY; STATEMENT; EXPOSURE; RISK;
D O I
10.1530/REP-20-0615
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the past several decades, the incidence of two male breast diseases, gynecomastia and male breast cancer, have increased in human populations. Whereas male breast cancer remains a rare disease, gynecomastia, a condition that arises due to abnormal development and growth of the male breast epithelium, is fairly common. In this review, we present the male mouse mammary gland as a potential model to understand human male breast diseases. Even though the male mouse typically lacks nipples, the male retains a small mammary rudiment with epithelium that is highly sensitive to estrogenic chemicals during the perinatal and peripubertal periods. In just the last few years, our understanding of the biology of the male mouse mammary gland has expanded. Researchers have characterized the complexity and size of the male mammary epithelium across the life course. Studies have documented that the male mouse mammary gland has left-right asymmetric morphologies, as well as asymmetries in the responsiveness of the left and right glands to estrogens. Recent studies have also revealed that the effect of xenoestrogens on the male mammary gland can differ based on the timing of evaluation (prior to puberty, in puberty, and in adulthood) and the administered dose. Based on the available evidence, we argue that there is a strong case that estrogenic chemicals promote the growth of the male mouse epithelium, consistent with human gynecomastia. We also argue that these outcomes should be characterized as adverse effects and should be considered in regulatory decision-making.
引用
收藏
页码:F79 / F89
页数:11
相关论文
共 50 条
  • [1] Endocrine-disrupting chemicals and male health
    Minguez-Alaron, Lidia
    Gaskins, Audrey J.
    Meeker, John D.
    Braun, Joseph M.
    Chavarro, Jorge E.
    FERTILITY AND STERILITY, 2023, 120 (06) : 1138 - 1149
  • [2] Endocrine-disrupting chemicals and male reproductive health
    Knez, Jure
    REPRODUCTIVE BIOMEDICINE ONLINE, 2013, 26 (05) : 440 - 448
  • [3] Endocrine-disrupting chemicals and male reproductive health
    Sharma, Aditi
    Mollier, Josephine
    Brocklesby, Richard W. K.
    Caves, Charlotte
    Jayasena, Channa N.
    Minhas, Suks
    REPRODUCTIVE MEDICINE AND BIOLOGY, 2020, 19 (03) : 243 - 253
  • [4] Endocrine-Disrupting Chemicals
    Gore, Andrea C.
    JAMA INTERNAL MEDICINE, 2016, 176 (11) : 1705 - 1706
  • [5] Endocrine-disrupting chemicals
    Kiess, Wieland
    Haeusler, Gabriele
    BEST PRACTICE & RESEARCH CLINICAL ENDOCRINOLOGY & METABOLISM, 2021, 35 (05)
  • [6] Endocrine-disrupting chemicals
    Bertram, Michael G.
    Gore, Andrea C.
    Tyler, Charles R.
    Brodin, Tomas
    CURRENT BIOLOGY, 2022, 32 (13)
  • [7] Endocrine-Disrupting Chemicals
    Friedrich, M. J.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2013, 309 (15): : 1578 - 1578
  • [8] Monitoring endocrine-disrupting chemicals
    Sadik, OA
    Witt, DM
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (17) : 368A - +
  • [9] Endocrine-Disrupting Chemicals in Cosmetics
    Gore, Andrea C.
    Cohn, Barbara
    JAMA DERMATOLOGY, 2020, 156 (05) : 603 - 604
  • [10] Sonophotocatalysis of endocrine-disrupting chemicals
    Tokumoto, Toshinobu
    Ishikawa, Katsutoshi
    Furusawa, Tsubasa
    Ii, Sanae
    Hachisuka, Kaori
    Tokumoto, Mika
    Tsai, Huai-Jen
    Uchida, Shigeo
    Maezawa, Akinori
    MARINE ENVIRONMENTAL RESEARCH, 2008, 66 (03) : 372 - 377