Thermodynamic analysis of solid oxide electrolyzer integration with engine waste heat recovery for hydrogen production

被引:49
|
作者
Wang, Fu [1 ,2 ]
Wang, Lei [3 ]
Ou, Yangliang [1 ]
Lei, Xuanmiao [1 ]
Yuan, Jinliang [1 ]
Liu, Xingjiang [2 ]
Zhu, Yingying [1 ]
机构
[1] Ningbo Univ, Fac Maritime & Transportat, Ningbo 315211, Peoples R China
[2] Tianjin Inst Power Sources, Sci & Technol Power Sources Lab, Tianjin 300384, Peoples R China
[3] China Coal Soc, Beijing 100013, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid oxide electrolyzer; Water electrolysis; Hydrogen production; Waste heat recovery; Thermodynamic analysis; HIGH-TEMPERATURE ELECTROLYSIS; TECHNOECONOMIC ANALYSIS; ENERGY; STEAM; SYSTEM; WATER; TECHNOLOGIES; POWER; CAPTURE; TOWER;
D O I
10.1016/j.csite.2021.101240
中图分类号
O414.1 [热力学];
学科分类号
摘要
Water electrolysis based on solid oxide electrolysis cell (SOEC) exhibits high conversion efficiency due to part of energy demand can be derived from thermal energy. Therefore, it can be integrated with other sources of thermal energy to reduce the consumption of electrical energy. In this paper, a diesel engine is integrated with the SOEC stacks for heat recovery steam generator (HRSG). The thermal energy from the engine exhaust gas used to heat the inlet H2O of the SOEC is carried out as the integration case. A SOEC plant using electricity as the thermal heat input is selected as the base case. Thermodynamic analysis of the benchmark and integration scheme reveals that an electrical efficiency of 73.12% and 85.17% can be achieved, respectively. The diesel to power efficiency can be increased to 70% when the exhaust gas is completely utilized by the SOEC system. The impacts of some key parameters, including current density and operating temperature on system performance have also been conducted and found that the system has optimized parameters of current density and operating temperature to achieve better performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Comparative thermoeconomic analysis of integrated hybrid multigeneration systems with hydrogen production for waste heat recovery in cement plants
    Dashtizadeh, Ebrahim
    Houshfar, Ehsan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 89 : 868 - 882
  • [42] Techno-economic analysis of green hydrogen production, storage, and waste heat recovery plant in the context of Nepal
    Paneru, Bishwash
    Paudel, Anup
    Paneru, Biplov
    Alexander, Vikram
    Mainali, D. P.
    Karki, Sameep
    Karki, Seemant
    Thapa, Sarthak Bikram
    Poudyal, Khem Narayan
    Poudyal, Ramhari
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 77 : 892 - 905
  • [43] Thermodynamic Analysis of Supercritical Carbon Dioxide Cycle for Internal Combustion Engine Waste Heat Recovery
    Yu, Wan
    Gong, Qichao
    Gao, Dan
    Wang, Gang
    Su, Huashan
    Li, Xiang
    PROCESSES, 2020, 8 (02)
  • [44] Technology competition in the internal combustion engine waste heat recovery: a patent landscape analysis
    Karvonen, Matti
    Kapoor, Rahul
    Uusitalo, Antti
    Ojanen, Ville
    JOURNAL OF CLEANER PRODUCTION, 2016, 112 : 3735 - 3743
  • [45] Thermo-economic study of waste heat recovery from condensing steam for hydrogen production by PEM electrolysis
    Lummen, Norbert
    Karouach, Assma
    Tveitan, Stine
    ENERGY CONVERSION AND MANAGEMENT, 2019, 185 : 21 - 34
  • [46] Design and exergy analysis of waste heat recovery system and gas engine for power generation in Tehran cement factory
    Naeimi, Abbas
    Bidi, Mokhtar
    Ahmadi, Mohammad Hossein
    Kumar, Ravinder
    Sadeghzadeh, Milad
    Nazari, Mohammad Alhuyi
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2019, 9 : 299 - 307
  • [47] Computational Models Analysis of Diesel Engine Exhaust Waste Heat Recovery
    Hou Xuejun
    Xiao Peng
    2012 INTERNATIONAL CONFERENCE ON ECOLOGY, WASTE RECYCLING, AND ENVIRONMENT (ICEWE 2012), 2012, 7 : 228 - 233
  • [48] Thermodynamic analysis of a novel transcritical-subcritical parallel organic Rankine cycle system for engine waste heat recovery
    Zhi, Liang-Hui
    Hu, Peng
    Chen, Long-Xiang
    Zhao, Gang
    ENERGY CONVERSION AND MANAGEMENT, 2019, 197
  • [49] Thermodynamic and economic analysis of a gas-fired absorption heat pump for district heating with cascade recovery of flue gas waste heat
    Lu, Ding
    Chen, Gaofei
    Gong, Maoqiong
    Bai, Yin
    Xu, Qingyu
    Zhao, Yanxing
    Dong, Xueqiang
    Shen, Jun
    ENERGY CONVERSION AND MANAGEMENT, 2019, 185 : 87 - 100
  • [50] Effect of waste exhaust heat on hydrogen production and its utilization in CI engine
    Thiyagarajan, S.
    Sonthalia, Ankit
    Geo, V. Edwin
    Chokkalingam, Bharatiraja
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (10) : 5987 - 5996