Unravelling the Influence of Synthetic Paths on the Cation Arrangement in Lithium-rich Layered Oxide Cathode Materials

被引:5
作者
Zhang, Di [1 ]
Pei, Kewei [1 ]
Peng, Zhenzhen [1 ,3 ]
Wang, Huan [1 ]
Wang, Qiujun [1 ]
Sun, Huilan [1 ]
Hu, Zhilin [2 ]
Li, Zhaojin [1 ]
Wang, Bo [1 ,3 ]
机构
[1] Hebei Univ Sci & Technol, Sch Mat Sci & Engn, Hebei Key Lab Flexible Funct Mat, shijiazhuang 050018, Hebei, Peoples R China
[2] Hebei Kuntian New Energy Technol Co Ltd, Hebei Technol Innovat Ctr Anode Mat Lithium Ion Ba, shijiazhuang 051130, Hebei, Peoples R China
[3] Hebei Univ Sci & Technol, Sch Mat Sci & Engn, shijiazhuang 050018, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -rich layered oxides; Cathode; Sol -gel method; Cation arrangement; Voltage decay; LI; PERFORMANCE; VOLTAGE; LI1.2MN0.54NI0.13CO0.13O2; MICROSPHERES; CHALLENGES; ROUTES; REDOX;
D O I
10.1016/j.electacta.2022.140983
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-rich layered oxides (LLOs) have garnered substantial attention due to their superior reversible capacity. However, oxygen release and transition metal migration are likely to occur during the charging and discharging process because of the inherently unstable structure of LLOs, which hampers their commercialization process. Present studies suggest that the local structure and atomic arrangement have a considerable impact on the stability of LLOs. Hence, researchers have been trying to determine how to implement the control of atomic ordering. Herein, we propose a new strategy to modify the cation arrangement of LLOs by adjusting the mixing order of cations through the sol-gel method. As a result, the optimized S-LLO sample presents a more ordered cation arrangement than that of the pristine M-LLO sample. The S-LLO cathode, meanwhile, provides a high discharging capacity of 249.5 mAh center dot g 1 accompanied by a coulombic efficiency of 73.7% at 0.1 C and can still maintain a capacity of 91.8 mAh center dot g 1 at 10 C. More importantly, a high-capacity retention of 71.7% can be obtained after 150 cycles at 1 C for the optimized LLO cathode, whereas the pristine M-LLO sample retains a retention of only 45.5%.
引用
收藏
页数:8
相关论文
共 58 条
  • [31] Synthetic Pathway Determines the Nonequilibrium Crystallography of Li- and Mn-Rich Layered Oxide Cathode Materials
    Menon, Ashok S.
    Ulusoy, Seda
    Ojwang, Dickson O.
    Riekehr, Lars
    Didier, Christophe
    Peterson, Vanessa K.
    Salazar-Alvarez, German
    Svedlindh, Peter
    Edstrom, Kristina
    Gomez, Cesar Pay
    Brant, William R.
    [J]. ACS APPLIED ENERGY MATERIALS, 2021, 4 (02): : 1924 - 1935
  • [32] Influence of Synthesis Routes on the Crystallography, Morphology, and Electrochemistry of Li2MnO3
    Menon, Ashok S.
    Ojwang, Dickson O.
    Willhammar, Tom
    Peterson, Vanessa K.
    Edstrom, Kristina
    Gomez, Cesar Pay
    Brant, William R.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (05) : 5939 - 5950
  • [33] Structure and properties of ordered Li2IrO3 and Li2PtO3
    O'Malley, Matthew J.
    Verweij, Henk
    Woodward, Patrick M.
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2008, 181 (08) : 1803 - 1809
  • [34] Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook
    Or, Tyler
    Gourley, Storm W. D.
    Kaliyappan, Karthikeyan
    Yu, Aiping
    Chen, Zhongwei
    [J]. CARBON ENERGY, 2020, 2 (01) : 6 - 43
  • [35] Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1-xBxO2 as cathode materials for lithium-ion batteries
    Pan, Lingchao
    Xia, Yonggao
    Qiu, Bao
    Zhao, Hu
    Guo, Haocheng
    Jia, Kai
    Gu, Qingwen
    Liu, Zhaoping
    [J]. JOURNAL OF POWER SOURCES, 2016, 327 : 273 - 280
  • [36] Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries
    Qiu, Bao
    Zhang, Minghao
    Wu, Lijun
    Wang, Jun
    Xia, Yonggao
    Qian, Danna
    Liu, Haodong
    Hy, Sunny
    Chen, Yan
    An, Ke
    Zhu, Yimei
    Liu, Zhaoping
    Meng, Ying Shirley
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [37] The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries
    Saubanere, M.
    McCalla, E.
    Tarascon, J. -M.
    Doublet, M. -L.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (03) : 984 - 991
  • [38] Insight into the atomic structure of Li2MnO3 in Li-rich Mn-based cathode materials and the impact of its atomic arrangement on electrochemical performance
    Song, Yuanzhe
    Zhao, Xuebing
    Wang, Chao
    Bi, Han
    Zhang, Jie
    Li, Sesi
    Wang, Min
    Che, Renchao
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) : 11214 - 11223
  • [39] Template-determined microstructure and electrochemical performances of Li-rich layered metal oxide cathode
    Tian, Yuanyuan
    Chen, Min
    Xue, Shida
    Cai, Youxuan
    Huang, Qiming
    Liu, Xiang
    Li, Weishan
    [J]. JOURNAL OF POWER SOURCES, 2018, 401 : 343 - 353
  • [40] Aqueous lithium-ion batteries
    von Wald Cresce, Arthur
    Xu, Kang
    [J]. CARBON ENERGY, 2021, 3 (05) : 721 - 751