Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L∞-coefficients

被引:153
作者
Bebendorf, M [1 ]
Hackbusch, W [1 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
Kernel Function; Green Function; Boundary Element; Mass Matrix; Boundary Element Method;
D O I
10.1007/s00211-002-0445-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the existence of blockwise low-rank approximants - so- called H-matrices - to inverses of FEM matrices in the case of uniformly elliptic operators with L-infinity-coefficients. Unlike operators arising from boundary element methods for which the H-matrix theory has been extensively developed, the inverses of these operators do not benefit from the smoothness of the kernel function. However, it will be shown that the corresponding Green functions can be approximated by degenerate functions giving rise to the existence of blockwise low-rank approximants of FEM inverses. Numerical examples confirm the correctness of our estimates. As a side-product we analyse the H-matrix property of the inverse of the FE mass matrix.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 22 条
[11]  
Grasedyck L., 2001, THESIS U KIEL
[12]   THE GREEN-FUNCTION FOR UNIFORMLY ELLIPTIC-EQUATIONS [J].
GRUTER, M ;
WIDMAN, KO .
MANUSCRIPTA MATHEMATICA, 1982, 37 (03) :303-342
[13]  
Hackbusch W, 1999, COMPUTING, V62, P89, DOI 10.1007/s006070050015
[14]  
Hackbusch W, 2000, COMPUTING, V64, P21
[15]   ON THE FAST MATRIX MULTIPLICATION IN THE BOUNDARY ELEMENT METHOD BY PANEL CLUSTERING [J].
HACKBUSCH, W ;
NOWAK, ZP .
NUMERISCHE MATHEMATIK, 1989, 54 (04) :463-491
[16]  
HACKBUSCH W, 1995, INTEGRAL EQUATIONS T, V128
[17]  
Hackbusch W, 1994, ITERATIVE SOLUTION L
[18]  
Hackbusch W., 1992, ELLIPTIC DIFFERENTIA
[19]  
Hackbusch W., 1985, MULTIGRID METHODS AP, DOI 10.1007/978-3-662-02427-0
[20]  
Meinardus G., 1967, APPROXIMATION FUNCTI