LIPSCHITZ-TYPE INEQUALITIES FOR ANALYTIC FUNCTIONS IN BANACH ALGEBRAS

被引:2
作者
Dragomir, Silvestru Sever [1 ,2 ]
机构
[1] Victoria Univ, Coll Engn & Sci, Math, POB 14428, Melbourne City, MC 8001, Australia
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, DST NRF Ctr Excellence Math & Stat Sci, Private Bag 3, ZA-2050 Johannesburg, South Africa
关键词
Banach algebras; analytic functions; Lipschitz-type inequalities; exponential and logarithmic functions on Banach algebra;
D O I
10.1017/S000497271900042X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide some bounds for the quantity parallel to f(y) - f(x)parallel to, where f : D -> C is an analytic function on the domain D subset of C and x, y is an element of B, a Banach algebra, with the spectra sigma(x), sigma(y) subset of D. Applications for the exponential and logarithmic functions on the Banach algebra B are also given.
引用
收藏
页码:489 / 497
页数:9
相关论文
共 16 条
  • [1] [Anonymous], 1978, THE BOCHNER INTEGRAL
  • [2] [Anonymous], 1973, FUNCTIONAL ANAL
  • [3] [Anonymous], 1972, NBS APPL MATH SERIES
  • [4] Differentiation of operator functions and perturbation bounds
    Bhatia, R
    Singh, D
    Sinha, KB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (03) : 603 - 611
  • [5] BHATIA R, 1994, LINEAR ALGEBRA APPL, V209, P367
  • [6] Bhatia Rajendra, 1997, Matrix Analysis, Graduate texts in mathematics, V169, DOI 10.1007/978-1-4612-0653-8
  • [7] Boldea MV., 2016, PANAMER MATH J, V26, P71
  • [8] Conway JB., 1990, COURSE FUNCTIONAL AN
  • [9] Douglas R G., 1998, GRADUATE TEXTS MATH
  • [10] Dragomir S. S., 2017, Cubo, V19, P53