Dual spaces for variable martingale Lorentz-Hardy spaces

被引:11
作者
Jiao, Yong [1 ]
Weisz, Ferenc [2 ]
Wu, Lian [1 ]
Zhou, Dejian [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Eotvos Lorand Univ, Dept Numer Anal, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
关键词
Variable martingales; Martingale Hardy spaces; Dualities; John-Nirenberg theorems; LEBESGUE SPACES; INEQUALITIES;
D O I
10.1007/s43037-021-00139-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Hp(),q be the variable Lorentz-Hardy martingale spaces. In this paper, we give a new atomic decomposition for these spaces via simple Lr-atoms (1<r <=infinity). Using this atomic decomposition, we consider the dual spaces of variable Lorentz-Hardy spaces Hp(),q for the case 0<p()<= 1, 0<q <= 1, and 0<p()<2, 1<q<infinity respectively, and prove that they are equivalent to the BMO spaces with variable exponent. Furthermore, we also obtain several John-Nirenberg theorems based on the dual results.
引用
收藏
页数:31
相关论文
共 36 条
[21]   Lorentz spaces with variable exponents [J].
Kempka, Henning ;
Vybiral, Jan .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) :938-954
[22]  
Long R.L., 1993, Martingale Spaces and Inequalities, DOI [10.1007/978-3-322-99266-6, DOI 10.1007/978-3-322-99266-6]
[23]   Martingale Orlicz-Hardy spaces [J].
Miyamoto, Takashi ;
Nakai, Eiichi ;
Sadasue, Gaku .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (5-6) :670-686
[24]   Maximal function on generalized martingale Lebesgue spaces with variable exponent [J].
Nakai, Eiichi ;
Sadasue, Gaku .
STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) :2168-2171
[25]   Hardy spaces with variable exponents and generalized Campanato spaces [J].
Nakai, Eiichi ;
Sawano, Yoshihiro .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) :3665-3748
[26]  
Novikov I., 1989, FUNCTION SPACES, P120
[27]  
Semenov E.M, 1982, TRANSLATIONS MATH MO, V54
[29]  
Weisz F., 2002, Summability of Multi-dimensional Fourier Series and Hardy Spaces, Mathematics and its Applications, DOI [10.1007/978-94-017-3183-6, DOI 10.1007/978-94-017-3183-6]
[30]  
Weisz F., 1998, PROBAB MATH STAT-POL, V18, P133