Dual spaces for variable martingale Lorentz-Hardy spaces

被引:11
作者
Jiao, Yong [1 ]
Weisz, Ferenc [2 ]
Wu, Lian [1 ]
Zhou, Dejian [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Eotvos Lorand Univ, Dept Numer Anal, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
关键词
Variable martingales; Martingale Hardy spaces; Dualities; John-Nirenberg theorems; LEBESGUE SPACES; INEQUALITIES;
D O I
10.1007/s43037-021-00139-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Hp(),q be the variable Lorentz-Hardy martingale spaces. In this paper, we give a new atomic decomposition for these spaces via simple Lr-atoms (1<r <=infinity). Using this atomic decomposition, we consider the dual spaces of variable Lorentz-Hardy spaces Hp(),q for the case 0<p()<= 1, 0<q <= 1, and 0<p()<2, 1<q<infinity respectively, and prove that they are equivalent to the BMO spaces with variable exponent. Furthermore, we also obtain several John-Nirenberg theorems based on the dual results.
引用
收藏
页数:31
相关论文
共 36 条
[1]   Lebesgue spaces with variable exponent on a probability space [J].
Aoyama, Hiroyuki .
HIROSHIMA MATHEMATICAL JOURNAL, 2009, 39 (02) :207-216
[2]  
Bennett C., 1988, Interpolation of Operators
[3]   INDICES OF FUNCTION SPACES AND THEIR RELATIONSHIP TO INTERPOLATION [J].
BOYD, DW .
CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (05) :1245-&
[4]   Approximate identities in variable LP spaces [J].
Cruz-Uribe, D. ;
Fiorenza, A. .
MATHEMATISCHE NACHRICHTEN, 2007, 280 (03) :256-270
[5]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[6]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[7]   CHARACTERIZATIONS OF BOUNDED MEAN OSCILLATION [J].
FEFFERMAN, C .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (04) :587-+
[8]  
FEFFERMAN R, 1986, STUD MATH, V85, P1
[9]  
Garca-Cuerva J., 1985, Notas de Matematica Mathematical Notes, V104
[10]  
Garsia A., 1973, Math. Lecture Notes Series