Machine learning-based approach to GPS antijamming

被引:7
|
作者
Wang, Cheng-Zhen [1 ]
Kong, Ling-Wei [1 ]
Jiang, Junjie [1 ]
Lai, Ying-Cheng [1 ,2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
关键词
GPS; Antijamming; Machine learning; Reservoir computing; DEEP NEURAL-NETWORKS; CHAOTIC SYSTEMS;
D O I
10.1007/s10291-021-01154-7
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A challenging and outstanding problem in applications that involve or rely on GPS signals is to mitigate jamming. We develop a machine learning-based antijamming framework for GPS signals. Three types of jamming signals are considered: continuous wave interference, chirp and pulse jamming. In addition, white Gaussian noise is assumed to be present. From the point of view of communication, information is encoded in the coarse/acquisition (C/A) code. Multiplying the jammed signal by a sinusoidal wave and integrating over one C/A code period leads to a jammed C/A code signal. To mitigate jamming, we study three types of machine learning methods: reservoir computing (echo state network), multi-layer perceptron, and long short-term memory networks (RNNs). A machine can be trained to learn and predict the signal directly or learn and predict jamming where the real signal can be obtained by removing the jammed component from the total received signal. For a high-frequency carrier (e.g., the standard 1575.42 MHz L1 carrier), learning and prediction can be made computationally efficiently on the C/A code signal. The main result is that machine learning can be effective for predicting and extracting weak GPS signals even in a strongly jammed/noisy environment where the jamming amplitude is three orders of magnitude stronger than the GPS signal. We find that the reservoir computing scheme is stable and performs well for all three types of jamming. The multi-layer perceptron is better for predicting the jamming signal than the GPS signal itself, and the long short-term memory networks work well but only for certain jamming types. In particular, with the direct signal prediction method, the bit error rate (BER) associated with reservoir computing (RC) remains at near-zero values (less than 1%) even for jamming signal ratio (JSR) up to 60 dB for the three types of jamming. The multi-layer perceptron (MLP) method breaks down when the JSR is larger than 20 dB for continuous wave interference (CWI) and pulse jamming, 45 dB for chirp jamming. The long short-term memory (LSTM) can perform very well for the chirp jamming with a near zero error rate and give BER larger than 10% when the JSR is around 40 dB for the CWI and pulse jamming. For the jamming prediction method (indirect method), these three machine learning methods perform well, with near-zero BER (less than 1%). Overall, the RC scheme is stable and performs well for three types of jamming. Besides, RC is fast compared to LSTM method, with much less running time.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Machine learning-based approach for prediction of ion channels and their subclasses
    Singh, Anuj
    Tiwari, Arvind Kumar
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2023, 124 (01) : 72 - 88
  • [32] Machine Learning-Based Approach to Predict Intrauterine Growth Restriction
    Taeidi, Elham
    Ranjbar, Amene
    Montazeri, Farideh
    Mehrnoush, Vahid
    Darsareh, Fatemeh
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (07)
  • [33] Machine learning-based approach for identifying mental workload of pilots
    Mohanavelu, K.
    Poonguzhali, S.
    Janani, A.
    Vinutha, S.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
  • [34] Auto Machine Learning-Based Approach for Source Printer Identification
    Phu-Qui Vo
    Nhan Tam Dang
    Phu Nguyen, Q.
    An Mai
    Nguyen, Loan T. T.
    Quoc-Thong Nguyen
    Ngoc-Thanh Nguyen
    RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, 2022, 1716 : 668 - 680
  • [35] A Machine Learning-Based Approach for the Design of Lower Limb Exoskeleton
    Varma, V. S.
    Yogeshwar Rao, R.
    Vundavilli, P. R.
    Pandit, M. K.
    Budarapu, P. R.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (08)
  • [36] Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach
    Bouabdallaoui, Yassine
    Lafhaj, Zoubeir
    Yim, Pascal
    Ducoulombier, Laure
    Bennadji, Belkacem
    SENSORS, 2021, 21 (04) : 1 - 15
  • [37] Detecting Refactoring Commits in Machine Learning Python']Python Projects: A Machine Learning-Based Approach
    Noei, Shayan
    Li, Heng
    Zou, Ying
    ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2025, 34 (03)
  • [38] A machine learning-based mobile robot visual homing approach
    Zhu, Q.
    Ji, X.
    Wang, J.
    Cai, C.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2018, 66 (05) : 621 - 634
  • [39] A Machine Learning-Based Approach for Demarcating Requirements in Textual Specifications
    Abualhaija, Sallam
    Arora, Chetan
    Sabetzadeh, Mehrdad
    Briand, Lionel C.
    Vaz, Eduardo
    2019 27TH IEEE INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE (RE 2019), 2019, : 51 - 62
  • [40] A Machine Learning-based Approach for the Categorization of MicroRNAs to Their Species of Origin
    Odenthal, Luise
    Allmer, Jens
    Yousef, Malik
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2020, : 150 - 157