Machine learning-based approach to GPS antijamming

被引:7
|
作者
Wang, Cheng-Zhen [1 ]
Kong, Ling-Wei [1 ]
Jiang, Junjie [1 ]
Lai, Ying-Cheng [1 ,2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
关键词
GPS; Antijamming; Machine learning; Reservoir computing; DEEP NEURAL-NETWORKS; CHAOTIC SYSTEMS;
D O I
10.1007/s10291-021-01154-7
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A challenging and outstanding problem in applications that involve or rely on GPS signals is to mitigate jamming. We develop a machine learning-based antijamming framework for GPS signals. Three types of jamming signals are considered: continuous wave interference, chirp and pulse jamming. In addition, white Gaussian noise is assumed to be present. From the point of view of communication, information is encoded in the coarse/acquisition (C/A) code. Multiplying the jammed signal by a sinusoidal wave and integrating over one C/A code period leads to a jammed C/A code signal. To mitigate jamming, we study three types of machine learning methods: reservoir computing (echo state network), multi-layer perceptron, and long short-term memory networks (RNNs). A machine can be trained to learn and predict the signal directly or learn and predict jamming where the real signal can be obtained by removing the jammed component from the total received signal. For a high-frequency carrier (e.g., the standard 1575.42 MHz L1 carrier), learning and prediction can be made computationally efficiently on the C/A code signal. The main result is that machine learning can be effective for predicting and extracting weak GPS signals even in a strongly jammed/noisy environment where the jamming amplitude is three orders of magnitude stronger than the GPS signal. We find that the reservoir computing scheme is stable and performs well for all three types of jamming. The multi-layer perceptron is better for predicting the jamming signal than the GPS signal itself, and the long short-term memory networks work well but only for certain jamming types. In particular, with the direct signal prediction method, the bit error rate (BER) associated with reservoir computing (RC) remains at near-zero values (less than 1%) even for jamming signal ratio (JSR) up to 60 dB for the three types of jamming. The multi-layer perceptron (MLP) method breaks down when the JSR is larger than 20 dB for continuous wave interference (CWI) and pulse jamming, 45 dB for chirp jamming. The long short-term memory (LSTM) can perform very well for the chirp jamming with a near zero error rate and give BER larger than 10% when the JSR is around 40 dB for the CWI and pulse jamming. For the jamming prediction method (indirect method), these three machine learning methods perform well, with near-zero BER (less than 1%). Overall, the RC scheme is stable and performs well for three types of jamming. Besides, RC is fast compared to LSTM method, with much less running time.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Machine Learning-Based Multilevel Intrusion Detection Approach
    Ling, Jiasheng
    Zhang, Lei
    Liu, Chenyang
    Xia, Guoxin
    Zhang, Zhenxiong
    ELECTRONICS, 2025, 14 (02):
  • [22] A machine learning-based approach for estimating available bandwidth
    Chen, Ling-Jyh
    Chou, Cheng-Fu
    Wang, Bo-Chun
    TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 164 - +
  • [23] BROKEN RAIL PREDICTION WITH MACHINE LEARNING-BASED APPROACH
    Zhang, Zhipeng
    Zhou, Kang
    Liu, Xiang
    PROCEEDINGS OF THE JOINT RAIL CONFERENCE (JRC2020), 2020,
  • [24] A Novel GPS Antijamming Receiver Based on Noncircularity
    Chen Xian-Ning
    Qun Wan
    Yang Wan-Lin
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2010, 2010
  • [25] A Deep Learning-Based Approach to Forecast Ionospheric Delays for GPS Signals
    Srivani, I
    Prasad, G. Siva Vara
    Ratnam, D. Venkata
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1180 - 1184
  • [26] KNOWLEDGE-BASED SYSTEMS VERIFICATION - A MACHINE LEARNING-BASED APPROACH
    LOUNIS, H
    EXPERT SYSTEMS WITH APPLICATIONS, 1995, 8 (03) : 381 - 389
  • [27] Machine learning-based approach for predicting low birth weight
    Ranjbar, Amene
    Montazeri, Farideh
    Farashah, Mohammadsadegh Vahidi
    Mehrnoush, Vahid
    Darsareh, Fatemeh
    Roozbeh, Nasibeh
    BMC PREGNANCY AND CHILDBIRTH, 2023, 23 (01)
  • [28] Oscillation Detection in Process Industries by a Machine Learning-Based Approach
    Dambros, Jonathan W., V
    Trierweiler, Jorge O.
    Farenzena, Marcelo
    Kloft, Marius
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (31) : 14180 - 14192
  • [29] A Machine Learning-Based Approach to Quantify ENSO Sources of Predictability
    Colfescu, Ioana
    Christensen, Hannah
    Gagne, David John
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (13)
  • [30] Machine learning-based approach for predicting low birth weight
    Amene Ranjbar
    Farideh Montazeri
    Mohammadsadegh Vahidi Farashah
    Vahid Mehrnoush
    Fatemeh Darsareh
    Nasibeh Roozbeh
    BMC Pregnancy and Childbirth, 23