Assessment of kinship detection using RNA-seq data

被引:9
|
作者
Blay, Natalia [1 ,2 ,3 ]
Casas, Eduard [1 ,2 ,4 ]
Galvan-Femenia, Ivan [1 ,5 ]
Graffelman, Jan [6 ,7 ]
de Cid, Rafael [1 ,5 ]
Vavouri, Tanya [1 ,2 ]
机构
[1] Germans Trias & Pujol Res Inst PMPPC IGTP, Program Predict & Personalized Med Canc, Badalona 08916, Spain
[2] Univ Autonoma Barcelona, Josep Carreras Leukaemia Res Inst IJC, Campus ICO Germans Trias & Pujol, Badalona 08916, Spain
[3] Univ Oberta Catalunya, Masters Programme Bioinformat & Biostat, Barcelona 08035, Spain
[4] Univ Barcelona, Doctoral Programme Biomed, Barcelona 08007, Spain
[5] Germans Trias & Pujol Res Inst, Genomes Life GCAT Lab Grp, Can Ruti Campus,Cami Escoles S-N, Barcelona 08916, Spain
[6] Univ Politecn Cataluna, Dept Stat & Operat Res, Barcelona 08028, Spain
[7] Univ Washington, Dept Biostat, Seattle, WA 98105 USA
关键词
IDENTIFICATION; RELATEDNESS; INHERITANCE; LIKELIHOODS; EXPRESSION; VARIANTS; FORMAT; TOOL;
D O I
10.1093/nar/gkz776
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Analysis of RNA sequencing (RNA-seq) data from related individuals is widely used in clinical and molecular genetics studies. Prediction of kinship from RNA-seq data would be useful for confirming the expected relationships in family based studies and for highlighting samples from related individuals in case-control or population based studies. Currently, reconstruction of pedigrees is largely based on SNPs or microsatellites, obtained from genotyping arrays, whole genome sequencing and whole exome sequencing. Potential problems with using RNA-seq data for kinship detection are the low proportion of the genome that it covers, the highly skewed coverage of exons of different genes depending on expression level and allele-specific expression. In this study we assess the use of RNA-seq data to detect kinship between individuals, through pairwise identity by descent (IBD) estimates. First, we obtained high quality SNPs after successive filters to minimize the effects due to allelic imbalance as well as errors in sequencing, mapping and genotyping. Then, we used these SNPs to calculate pairwise IBD estimates. By analysing both real and simulated RNA-seq data we show that it is possible to identify up to second degree relationships using RNA-seq data of even low to moderate sequencing depth.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Detection and benchmarking of somatic mutations in cancer genomes using RNA-seq data
    Coudray, Alexandre
    Battenhouse, Anna M.
    Bucher, Philipp
    Iyer, Vishwanath R.
    PEERJ, 2018, 6
  • [2] Characterizing and annotating the genome using RNA-seq data
    Chen, Geng
    Shi, Tieliu
    Shi, Leming
    SCIENCE CHINA-LIFE SCIENCES, 2017, 60 (02) : 116 - 125
  • [3] Detection of generic differential RNA processing events from RNA-seq data
    Tran, Van Du T.
    Souiai, Oussema
    Romero-Barrios, Natali
    Crespi, Martin
    Gautheret, Daniel
    RNA BIOLOGY, 2016, 13 (01) : 59 - 67
  • [4] Detection of aberrant splicing events in RNA-seq data using FRASER
    Mertes, Christian
    Scheller, Ines F.
    Yepez, Vicente A.
    Celik, Muhammed H.
    Liang, Yingjiqiong
    Kremer, Laura S.
    Gusic, Mirjana
    Prokisch, Holger
    Gagneur, Julien
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] DETECTION OF BACTERIAL SMALL TRANSCRIPTS FROM RNA-SEQ DATA: A COMPARATIVE ASSESSMENT
    Pena-Castillo, Lourdes
    Grull, Marc
    Mulligan, Martin E.
    Lang, Andrew S.
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016, 2016, : 456 - 467
  • [6] Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data
    Kumar, Shailesh
    Vo, Angie Duy
    Qin, Fujun
    Li, Hui
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Impact of RNA degradation on fusion detection by RNA-seq
    Davila, Jaime I.
    Fadra, Numrah M.
    Wang, Xiaoke
    McDonald, Amber M.
    Nair, Asha A.
    Crusan, Barbara R.
    Wu, Xianglin
    Blommel, Joseph H.
    Jen, Jin
    Rumilla, Kandelaria M.
    Jenkins, Robert B.
    Aypar, Umut
    Klee, Eric W.
    Kipp, Benjamin R.
    Halling, Kevin C.
    BMC GENOMICS, 2016, 17
  • [8] Comparison of Alternative Splicing Junction Detection Tools Using RNA-Seq Data
    Ding, Lizhong
    Rath, Ethan
    Bai, Yongsheng
    CURRENT GENOMICS, 2017, 18 (03) : 268 - 277
  • [9] Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq
    Hartley, Stephen W.
    Mullikin, James C.
    NUCLEIC ACIDS RESEARCH, 2016, 44 (15) : e127
  • [10] Assessment of viral RNA in idiopathic pulmonary fibrosis using RNA-seq
    Yin, Qinyan
    Strong, Michael J.
    Zhuang, Yan
    Flemington, Erik K.
    Kaminski, Naftali
    de Andrade, Joao A.
    Lasky, Joseph A.
    BMC PULMONARY MEDICINE, 2020, 20 (01)