Spatial damping of MHD waves in solar prominences: Effect of background flow

被引:0
作者
Mishra, Ashish [1 ,2 ]
Kumar, Mukul [3 ,4 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Bhopal, India
[2] Sci Educ & Res Ctr, Kasganj, UP, India
[3] Swami Vivekanand Subharti Univ, Cent Res & Incubat Ctr, Meerut, Uttar Pradesh, India
[4] Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China
关键词
Solar prominences; MHD waves; Wave damping; Turbulence; Newtonian cooling; NONADIABATIC MAGNETOACOUSTIC WAVES; QUIESCENT PROMINENCE; MAGNETOHYDRODYNAMIC WAVES; DOPPLER OSCILLATIONS; PERIOD OSCILLATIONS; FILAMENT; PLASMA; PROPAGATION; THREADS; FIELD;
D O I
10.1016/j.asr.2021.05.009
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The extensive arch-shaped features, solar prominences, are observed subtending high into the solar corona. Considering the prominences to be unbound, homogeneous and isothermal, invoking the background flow, in presence of the Newtonian radiation and turbulent viscosity, to investigate the spatial damping of compressional MHD waves, we derived a dispersion relation and solved it numerically for both the Kraichnan and Kolmogorov turbulences for a time span of 10(-5) s to 10(5) s. For Kraichnan and Kolmogorov turbulences, we investigated the effect of background flow as well as variable physical parameters (e.g. electron density, magnetic field and angle between propagation vector and magnetic field) on the damping length of fast and slow modes. Our findings reveal that the background flow does not show any Doppler shift in the damping length of Fast as well as Slow modes for shorter periods. However, for the longer periods, the fast modes show significantly smaller Doppler shift but interestingly, we noticed that the slow modes exhibit a substantial Doppler shift. (C) 2021 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2930 / 2940
页数:11
相关论文
共 85 条
[1]   Observations of Excitation and Damping of Transversal Oscillations in Coronal Loops by AIA/SDO [J].
Abedini, A. .
SOLAR PHYSICS, 2018, 293 (02)
[2]   PATTERNS OF FLOWS IN AN INTERMEDIATE PROMINENCE OBSERVED BY HINODE [J].
Ahn, Kwangsu ;
Chae, Jongchul ;
Cao, Wenda ;
Goode, Philip R. .
ASTROPHYSICAL JOURNAL, 2010, 721 (01) :74-79
[3]   Prominence oscillations [J].
Arregui, Inigo ;
Oliver, Ramon ;
Luis Ballester, Jose .
LIVING REVIEWS IN SOLAR PHYSICS, 2018, 15
[4]   Damping Mechanisms for Oscillations in Solar Prominences [J].
Arregui, Inigo ;
Luis Ballester, Jose .
SPACE SCIENCE REVIEWS, 2011, 158 (2-4) :169-204
[5]   On dissipative effects in solar prominences [J].
Ballai, I .
ASTRONOMY & ASTROPHYSICS, 2003, 410 (02) :L17-L19
[6]  
BALTHASAR H, 1993, ASTRON ASTROPHYS, V277, P635
[7]   Time damping of non-adiabatic magnetohydrodynamic waves in a partially ionised prominence medium: Effect of a background flow [J].
Barcelo, S. ;
Carbonell, M. ;
Ballester, J. L. .
ASTRONOMY & ASTROPHYSICS, 2011, 525
[8]   Gravity waves in a magnetized shear layer [J].
Barnes, G ;
MacGregor, KB ;
Charbonneau, P .
ASTROPHYSICAL JOURNAL, 1998, 498 (02) :L169-L172
[9]  
BASHKIRTSEV VS, 1984, SOL PHYS, V91, P93, DOI 10.1007/BF00213616
[10]   Hinode SOT observations of solar quiescent prominence dynamics [J].
Berger, Thomas E. ;
Shine, Richard A. ;
Slater, Gregory L. ;
Tarbell, Theodore D. ;
Title, Alan M. ;
Okamoto, Takenori J. ;
Ichimoto, Kiyoshi ;
Katsukawa, Yukio ;
Suematsu, Yoshinori ;
Tsuneta, Saku ;
Lites, Bruce W. ;
Shimizu, Toshifumi .
ASTROPHYSICAL JOURNAL LETTERS, 2008, 676 (01) :L89-L92