GST Integrated Silicon Photonics

被引:0
作者
Fang, Zhuoran [1 ]
Zheng, Jiajiu [1 ]
Xu, Peipeng [3 ,4 ]
Majumdar, Arka [1 ,2 ]
机构
[1] Univ Washington, Elect & Comp Engn, Seattle, WA 98195 USA
[2] Univ Washington, Phys Dept, Seattle, WA 98195 USA
[3] Ningbo Univ, Adv Technol Res Inst, Lab Infrared Mat & Devices, Ningbo 315211, Peoples R China
[4] Key Lab Photoelect Detect Mat & Devices Zhejiang, Ningbo 315211, Peoples R China
来源
ACTIVE PHOTONIC PLATFORMS XI | 2019年 / 11081卷
关键词
phase change materials; silicon photonics; integrated photonics devices; non-volatile; reconfigurable photonics; optical switches; PHASE-CHANGE MATERIALS; SWITCH;
D O I
10.1117/12.2525258
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The traditional ways of tuning a Silicon photonic network are mainly based on the thermal-optic effect or the free carrier effect of silicon. The drawbacks of these methods are the volatile nature and the extremely small change in the complex refractive index (Delta n<0.01). In order to achieve low energy consumption and smaller footprint for applications such as photonic memories or computing, it is essential that the two optical states of the system exhibit high optical contrast and remain non-volatile. Phase change materials such as GST provide a solution in that it exhibits drastic contrast in refractive index between the two non-volatile crystallographic states which can be switched reversibly. Here, we first show that GST can be integrated with a Si ring resonator to demonstrate a quasi-continuous optical switch with extinction ratio as high as 33dB. Secondly, we demonstrated GST-integrated 1x2 and 2x2 Si photonic switches using a three-waveguide coupler design which exhibits a low insertion loss of similar to 1dB and a compact coupling length of similar to 30 mu m. The crosstalk is as small as -10dB over a bandwidth of 30nm.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Silicon microring resonators [J].
Bogaerts, Wim ;
De Heyn, Peter ;
Van Vaerenbergh, Thomas ;
De Vos, Katrien ;
Selvaraja, Shankar Kumar ;
Claes, Tom ;
Dumon, Pieter ;
Bienstman, Peter ;
Van Thourhout, Dries ;
Baets, Roel .
LASER & PHOTONICS REVIEWS, 2012, 6 (01) :47-73
[2]   MICROWAVE PHOTONICS The programmable processor [J].
Capmany, Jose ;
Gasulla, Ivana ;
Perez, Daniel .
NATURE PHOTONICS, 2016, 10 (01) :6-8
[3]   Low-loss and broadband 2 x 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers [J].
Chen, Sitao ;
Shi, Yaocheng ;
He, Sailing ;
Dai, Daoxin .
OPTICS LETTERS, 2016, 41 (04) :836-839
[4]   On-chip photonic synapse [J].
Cheng, Zengguang ;
Rios, Carlos ;
Pernice, Wolfram H. P. ;
Wright, C. David ;
Bhaskaran, Harish .
SCIENCE ADVANCES, 2017, 3 (09)
[5]   Wide Bandgap Phase Change Material Tuned Visible Photonics [J].
Dong, Weiling ;
Liu, Hailong ;
Behera, Jitendra K. ;
Lu, Li ;
Ng, Ray J. H. ;
Sreekanth, Kandammathe Valiyaveedu ;
Zhou, Xilin ;
Yang, Joel K. W. ;
Simpson, Robert E. .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (06)
[6]   All-optical spiking neurosynaptic networks with self-learning capabilities [J].
Feldmann, J. ;
Youngblood, N. ;
Wright, C. D. ;
Bhaskaran, H. ;
Pernice, W. H. P. .
NATURE, 2019, 569 (7755) :208-+
[7]   Calculating with light using a chip-scale all-optical abacus [J].
Feldmann, J. ;
Stegmaier, M. ;
Gruhler, N. ;
Rios, C. ;
Bhaskaran, H. ;
Wright, C. D. ;
Pernice, W. H. P. .
NATURE COMMUNICATIONS, 2017, 8
[8]   Current-driven phase-change optical gate switch using indium-tin-oxide heater [J].
Kato, Kentaro ;
Kuwahara, Masashi ;
Kawashima, Hitoshi ;
Tsuruoka, Tohru ;
Tsuda, Hiroyuki .
APPLIED PHYSICS EXPRESS, 2017, 10 (07)
[9]   Breaking the Speed Limits of Phase-Change Memory [J].
Loke, D. ;
Lee, T. H. ;
Wang, W. J. ;
Shi, L. P. ;
Zhao, R. ;
Yeo, Y. C. ;
Chong, T. C. ;
Elliott, S. R. .
SCIENCE, 2012, 336 (6088) :1566-1569
[10]   Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control [J].
Lu, Zeqin ;
Yun, Han ;
Wang, Yun ;
Chen, Zhitian ;
Zhang, Fan ;
Jaeger, Nicolas A. F. ;
Chrostowski, Lukas .
OPTICS EXPRESS, 2015, 23 (03) :3795-3806