Recent advances in graphene-based polymer composite scaffolds for bone/ cartilage tissue engineering

被引:21
作者
Amiryaghoubi, Nazanin [1 ]
Fathi, Marziyeh [1 ]
Barar, Jaleh [1 ,2 ]
Omidian, Hossein [3 ]
Omidi, Yadollah [3 ]
机构
[1] Tabriz Univ Med Sci, Biomed Inst, Res Ctr Pharmaceut Nanotechnol, Tabriz, Iran
[2] Tabriz Univ Med Sci, Fac Pharm, Dept Pharmaceut, Tabriz, Iran
[3] Nova Southeastern Univ, Coll Pharm, Dept Pharmaceut Sci, Ft Lauderdale, FL 33328 USA
关键词
Graphene; Polymers; Scaffold; Tissue engineering; Regenerative medicine; MESENCHYMAL STEM-CELLS; THERMAL-CONDUCTIVITY; QUANTUM DOTS; MECHANICAL-PROPERTIES; OXIDE NANOCOMPOSITES; ELASTIC PROPERTIES; GRAPHITE OXIDE; DRUG-DELIVERY; OSTEOGENIC DIFFERENTIATION; SURFACE MODIFICATION;
D O I
10.1016/j.jddst.2022.103360
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
To date, tissue engineering and regenerative medicine have been substantially advanced using bioactive func-tional nanomaterials. Having capitalized on various safe and biocompatible advanced materials, different types of biomimetic scaffolds have been engineered and exploited as an ideal setting for the loading and delivery of the incorporated cells to the damaged/defected tissues. As a carbon-based allotrope with a single layer of atoms, graphene displays a two-dimensional nanoscale honeycomb matrix and provides a great possibility for surface functionalization. Graphene and its derivatives have been used in a wide variety of advanced areas, including pharmaceutical and biomedical applications, in large part due to their extraordinary properties such as outstanding electrical conductivity, high mechanical strength, ease of functionalization, large surface area, and high biocompatibility. Graphene and its polymeric composites have been used for the fabrication of advanced bioactive scaffolds to serve tissue regeneration. The unique features of graphene-polymer composites make them as suitable scaffolds for the delivery of the cells and necessary substances to the damaged tissues, in particular bone, cartilage, and electroactive tissues. In this review, we elaborate on the graphene-incorporated polymeric composite scaffolds and comprehensively discuss their applications.
引用
收藏
页数:14
相关论文
共 205 条
[1]  
Acik M, 2010, NAT MATER, V9, P840, DOI [10.1038/NMAT2858, 10.1038/nmat2858]
[2]   Removal of Surfactant from Nanocomposites Films Based on Thermally Reduced Graphene Oxide and Natural Rubber [J].
Aguilar-Bolados, Hector ;
Contreras-Cid, Ahirton ;
Neira-Carrillo, Andronico ;
Lopez-Manchado, Miguel ;
Yazdani-Pedram, Mehrdad .
JOURNAL OF COMPOSITES SCIENCE, 2019, 3 (02)
[3]   Nanofibrous scaffolds of ε-polycaprolactone containing Sr/Se-hydroxyapatite/graphene oxide for tissue engineering applications [J].
Ahmed, M. K. ;
Mansour, S. F. ;
Al-Wafi, Reem .
BIOMEDICAL MATERIALS, 2021, 16 (04)
[4]   Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals [J].
Akhavan, Omid ;
Ghaderi, Elham ;
Hashemi, Ehsan ;
Akbari, Ebrahim .
CARBON, 2015, 95 :309-317
[5]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[6]   Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects [J].
Alonzo, Matthew ;
Primo, Fabian Alvarez ;
Kumar, Shweta Anil ;
Mudloff, Joel A. ;
Dominguez, Erick ;
Fregoso, Gisel ;
Ortiz, Nick ;
Weiss, William M. ;
Joddar, Binata .
CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2021, 17
[7]   Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering [J].
Amiryaghoubi, Nazanin ;
Pesyan, Nader Noroozi ;
Fathi, Marziyeh ;
Omidi, Yadollah .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 162 :1338-1357
[8]   Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine [J].
Amiryaghoubi, Nazanin ;
Fathi, Marziyeh ;
Pesyan, Nader Noroozi ;
Samiei, Mohammad ;
Barar, Jaleh ;
Omidi, Yadollah .
MEDICINAL RESEARCH REVIEWS, 2020, 40 (05) :1833-1870
[9]  
Angin S., 2020, Comparative kinesiology of the human body: Normal and pathological conditions, P527, DOI 10.1016/B978-0-12-812162-7.00007-2
[10]   The effect of graphene substrate on osteoblast cell adhesion and proliferation [J].
Aryaei, Ashkan ;
Jayatissa, Ahalapitiya H. ;
Jayasuriya, Ambalangodage C. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (09) :3282-3290