Average independence polynomials

被引:26
作者
Brown, JI [1 ]
Nowakowski, RJ [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
graph; independence; polynomial; roots;
D O I
10.1016/j.jctb.2004.10.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The independence polynomial of a graph G is the function i (G, x) = Sigma(kgreater than or equal to0)i(k)x(k), where i(k) is the number of independent sets of vertices in G of cardinality k. We investigate here the average independence polynomial, where the average is taken over all independence polynomials of (labeled) graphs of order n. We prove that while almost every independence polynomial has a nonreal root, the average independence polynomials always have all real, simple roots. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:313 / 318
页数:6
相关论文
共 12 条
[1]  
ALON N, 1992, RANDOM GRAPHS
[2]  
[Anonymous], PUBL I MATH BEOGRAD
[3]  
Bollobas B, 1985, RANDOM GRAPHS
[4]   Roots of independence polynomials of well covered graphs [J].
Brown, JI ;
Dilcher, K ;
Nowakowski, RJ .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 11 (03) :197-210
[5]   On the location of roots of independence polynomials [J].
Brown, JI ;
Hickman, CA ;
Nowakowski, RJ .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2004, 19 (03) :273-282
[6]  
Brown JI, 2001, ARS COMBINATORIA, V58, P113
[7]   DEPENDENCE POLYNOMIALS [J].
FISHER, DC ;
SOLOW, AE .
DISCRETE MATHEMATICS, 1990, 82 (03) :251-258
[8]  
Godsil C.D., 1993, Chapman and Hall Mathematics Series
[9]  
GUTMAN I, 1992, COMMUN MATH CHEM MAT, V28, P139
[10]  
HOEDE C, 1994, DISCRETE MATH, V25, P219