Electrochemically Derived Graphene-Like Carbon Film as a Superb Substrate for High-Performance Aqueous Zn-Ion Batteries

被引:103
作者
Wu, Yunzhao [1 ]
Wang, Mingchao [2 ]
Tao, Ye [1 ]
Zhang, Kai [1 ]
Cai, Molang [1 ]
Ding, Yong [1 ]
Liu, Xuepeng [1 ]
Hayat, Tasawar [3 ]
Alsaedi, Ahmed [3 ]
Dai, Songyuan [1 ]
机构
[1] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China
[2] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[3] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
electrochemical kinetics; first-principles calculations; high energy density; long cycle life; porous graphene-like carbon film; CATHODE; TRANSITION; V2O5;
D O I
10.1002/adfm.201907120
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D graphene, as a light substrate for active loadings, is essential to achieve high energy density for aqueous Zn-ion batteries, yet traditional synthesis routes are inefficient with high energy consumption. Reported here is a simplified procedure to transform the raw graphite paper directly into the graphene-like carbon film (GCF). The electrochemically derived GCF contains a 2D-3D hybrid network with interconnected graphene sheets, and offers a highly porous structure. To realize high energy density, the Na:MnO2/GCF cathode and Zn/GCF anode are fabricated by electrochemical deposition. The GCF-based Zn-ion batteries deliver a high initial discharge capacity of 381.8 mA h g(-1) at 100 mA g(-1) and a reversible capacity of 188.0 mA h g(-1) after 1000 cycles at 1000 mA g(-1). Moreover, a recorded energy density of 511.9 Wh kg(-1) is obtained at a power density of 137 W kg(-1). The electrochemical kinetics measurement reveals the high capacitive contribution of the GCF and a co-insertion/desertion mechanism of H+ and Zn2+ ions. First-principles calculations are also carried out to investigate the effect of Na+ doping on the electrochemical performance of layered delta-MnO2 cathodes. The results demonstrate the attractive potential of the GCF substrate in the application of the rechargeable batteries.
引用
收藏
页数:9
相关论文
共 47 条
[1]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges [J].
Canepa, Pieremanuele ;
Gautam, Gopalakrishnan Sai ;
Hannah, Daniel C. ;
Malik, Rahul ;
Liu, Miao ;
Gallagher, Kevin G. ;
Persson, Kristin A. ;
Ceder, Gerbrand .
CHEMICAL REVIEWS, 2017, 117 (05) :4287-4341
[4]   An Electrolytic Zn-MnO2 Battery for High-Voltage and Scalable Energy Storage [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Ye, Chao ;
Zhang, Qinghua ;
Chen, Yungui ;
Gu, Lin ;
Davey, Kenneth ;
Qiao, Shi-Zhang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (23) :7823-7828
[5]   Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries [J].
Fan, Lei ;
Wei, Shuya ;
Li, Siyuan ;
Li, Qi ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (11)
[6]   Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High-Energy-Density and Durable Aqueous Zinc-Ion Battery [J].
Fang, Guozhao ;
Zhu, Chuyu ;
Chen, Minghui ;
Zhou, Jiang ;
Tang, Boya ;
Cao, Xinxin ;
Zheng, Xusheng ;
Pan, Anqiang ;
Liang, Shuquan .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (15)
[7]   Recent Advances in Aqueous Zinc-Ion Batteries [J].
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ACS ENERGY LETTERS, 2018, 3 (10) :2480-2501
[8]   High-Performance Reversible Aqueous Zn-Ion Battery Based on Porous MnOx Nanorods Coated by MOF-Derived N-Doped Carbon [J].
Fu, Yanqing ;
Wei, Qiliang ;
Zhang, Gaixia ;
Wang, Xiaomin ;
Zhang, Jihai ;
Hu, Yongfeng ;
Wang, Dongniu ;
Zuin, Lucia ;
Zhou, Tao ;
Wu, Yucheng ;
Sun, Shuhui .
ADVANCED ENERGY MATERIALS, 2018, 8 (26)
[9]   Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries [J].
He, Pan ;
Zhang, Guobin ;
Liao, Xiaobin ;
Yan, Mengyu ;
Xu, Xu ;
An, Qinyou ;
Liu, Jun ;
Mai, Liqiang .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)
[10]   High-Performance Aqueous Zinc-Ion Battery Based on Layered H2V3O8 Nanowire Cathode [J].
He, Pan ;
Quan, Yueli ;
Xu, Xu ;
Yan, Mengyu ;
Yang, Wei ;
An, Qinyou ;
He, Liang ;
Mai, Liqiang .
SMALL, 2017, 13 (47)