The shorter queue polling model

被引:18
作者
Adan, Ivo J. B. F. [1 ]
Boxma, Onno J. [2 ]
Kapodistria, Stella [2 ]
Kulkarni, Vidyadhar G. [3 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
关键词
Polling models; Join the shorter queue; Compensation approach; Boundary value problem; ADMISSION CONTROL; JOIN; CUSTOMERS;
D O I
10.1007/s10479-013-1495-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a two-queue polling model in which customers upon arrival join the shorter of two queues. Customers arrive according to a Poisson process and the service times in both queues are independent and identically distributed random variables having the exponential distribution. The two-dimensional process of the numbers of customers at the queue where the server is and at the other queue is a two-dimensional Markov process. We derive its equilibrium distribution using two methodologies: the compensation approach and a reduction to a boundary value problem.
引用
收藏
页码:167 / 200
页数:34
相关论文
共 46 条
[11]   Bad luck when joining the shortest queue [J].
Blanc, J. P. C. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 195 (01) :167-173
[12]  
Boon M.A., 2011, Surveys in Operations Research and Management Science, V16, P67, DOI 10.1016/j.sorms.2011.01.001
[13]  
Boxma O., 1993, Probab. Eng. Informational Sci, V7, P471, DOI DOI 10.1017/S0269964800003089
[14]  
Cohen J., 1998, J. Appl. Math. Stoch. Anal, V11, P115, DOI DOI 10.1155/S1048953398000112
[15]  
Cohen J., 1983, Boundary Value Problems in Queueing System Analysis
[16]   2 COUPLED PROCESSORS - REDUCTION TO A RIEMANN-HILBERT PROBLEM [J].
FAYOLLE, G ;
IASNOGORODSKI, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (03) :325-351
[17]   ON A FUNCTIONAL-EQUATION ARISING IN THE ANALYSIS OF A PROTOCOL FOR A MULTIACCESS BROADCAST CHANNEL [J].
FAYOLLE, G ;
FLAJOLET, P ;
HOFRI, M .
ADVANCES IN APPLIED PROBABILITY, 1986, 18 (02) :441-472
[18]  
Fayolle G., 1999, Random Walks in the Quarter-Plane, VVolume 40
[19]   2 QUEUES IN PARALLEL [J].
FLATTO, L ;
MCKEAN, HP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (02) :255-263
[20]  
Foley RD, 2001, ANN APPL PROBAB, V11, P569