ALTERNATING PROXIMAL ALGORITHM FOR BLIND IMAGE RECOVERY

被引:29
作者
Bolte, J. [1 ]
Combettes, P. L. [2 ]
Pesquet, J. -C. [3 ]
机构
[1] Univ Paris 06, UPMC, Equipe Combinatoire & Optimisat, UMR CNRS 7090, F-75005 Paris, France
[2] Univ Paris 06, UPMC, Lab Jacques Louis Lions, UMR CNRS 7598, F-75005 Paris, France
[3] Univ Paris Est, Lab Informat Gaspard Mong, CNRS, UMR 8049, F-77454 Marne La Vallee, France
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
关键词
Blind restoration; blind reconstruction; proximal methods; nonlinear optimization; wavelets; DECONVOLUTION; MINIMIZATION;
D O I
10.1109/ICIP.2010.5652173
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider a variational formulation of blind image recovery problems. A novel iterative proximal algorithm is proposed to solve the associated nonconvex minimization problem. Under suitable assumptions, this algorithm is shown to have better convergence properties than standard alternating minimization techniques. The objective function includes a smooth convex data fidelity term and nonsmooth convex regularization terms modeling prior information on the data and on the unknown linear degradation operator. A novelty of our approach is to bring into play recent nonsmooth analysis results. The pertinence of the proposed method is illustrated in an image restoration example.
引用
收藏
页码:1673 / 1676
页数:4
相关论文
共 9 条
[1]  
[Anonymous], 2010, FIXED POINT ALGORITH
[2]   Wavelet thresholding for some classes of non-Gaussian noise [J].
Antoniadis, A ;
Leporini, D ;
Pesquet, JC .
STATISTICA NEERLANDICA, 2002, 56 (04) :434-453
[3]   Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality [J].
Attouch, Hedy ;
Bolte, Jerome ;
Redont, Patrick ;
Soubeyran, Antoine .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) :438-457
[4]   Variational Bayesian Blind Deconvolution Using a Total Variation Prior [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (01) :12-26
[5]   Convergence of the alternating minimization algorithm for blind deconvolution [J].
Chan, TF ;
Wong, CK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 316 (1-3) :259-285
[6]  
Combettes PL, 2009, J CONVEX ANAL, V16, P727
[7]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[8]   Analysis versus synthesis in signal priors [J].
Elad, Michael ;
Milanfar, Peyman ;
Rubinstein, Ron .
INVERSE PROBLEMS, 2007, 23 (03) :947-968
[9]   Iterative statistical approach to blind image deconvolution [J].
Lam, EY ;
Goodman, JW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (07) :1177-1184