FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for Li-ion batteries

被引:20
作者
Wang, Zhong [1 ,2 ]
Lu, Hua-Quan [1 ,2 ]
Yin, Yan-Ping [1 ,2 ]
Sun, Xue-Yi [1 ,2 ]
Bai, Xiang-Tao [1 ,2 ]
Shen, Xue-Ling [1 ,2 ]
Zhuang, Wei-Dong [1 ,2 ]
Lu, Shi-Gang [1 ,2 ]
机构
[1] Gen Res Inst Nonferrous Met, R&D Ctr Vehicle & Energy Storage, Beijing 100088, Peoples R China
[2] China Automot Battery Res Inst Co Ltd, Beijing 100088, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Lithium-ion battery; Cathode material; Coating; Lithium-rich; Iron phosphate; DOT (1-X)LIMO2 M; SURFACE MODIFICATION; LITHIUM BATTERIES; CO ELECTRODES; ELECTROCHEMICAL PERFORMANCE; ANOMALOUS CAPACITY; MN; NI; STABILITY; LI2MNO3-LIMO2;
D O I
10.1007/s12598-015-0647-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Li[Li0.2Ni0.13Co0.13Mn0.54]O-2 cathode materials were synthesized by carbonate-based co-precipitation method, and then, its surface was coated by thin layers of FePO4. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The XRD and TEM results suggest that both the pristine and the coated materials have a hexagonal layered structure, and the FePO4 coating layer does not make any major change in the crystal structure. The FePO4-coated sample exhibits both improved initial discharge capacity and columbic efficiency compared to the pristine one. More significantly, the FePO4 coating layer has a much positive influence on the cycling performance. The FePO4-coated sample exhibits capacity retention of 82 % after 100 cycles at 0.5 A degrees C between 2.0 and 4.8 V, while only 28 % for the pristine one at the same charge-discharge condition. The electrochemical impedance spectroscopy (EIS) results indicate that this improved cycling performance could be ascribed to the presence of FePO4 on the surface of Li[Li0.2Ni0.13Co0.13Mn0.54]O-2 particle, which helps to protect the cathode from chemical attacks by HF and thus suppresses the large increase in charge transfer resistance.
引用
收藏
页码:899 / 904
页数:6
相关论文
共 36 条
[1]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[2]   The effects of FePO4-coating on high-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2 [J].
Bai, Yansong ;
Wang, Xianyou ;
Yang, Shunyi ;
Zhang, Xiaoyan ;
Yang, Xiukang ;
Shu, Hongbo ;
Wu, Qiang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 541 :125-131
[3]   Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries [J].
Cho, Sung-Woo ;
Kim, Gyeong-Ok ;
Ryu, Kwang-Sun .
SOLID STATE IONICS, 2012, 206 :84-90
[4]   High Temperature Performance of Surface-Treated Li1.1(Ni0.15Co0.1Mn0.55)O1.95 Layered Oxide [J].
Deng, H. ;
Belharouak, I. ;
Yoon, C. S. ;
Sun, Y. -K. ;
Amine, K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :A1035-A1039
[5]   Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries [J].
He, Wei ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Ai, Xinping ;
Yang, Hanxi .
RSC ADVANCES, 2012, 2 (08) :3423-3429
[6]   Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 [J].
Ito, Atsushi ;
Li, Decheng ;
Sato, Yuichi ;
Arao, Masazumi ;
Watanabe, Manabu ;
Hatano, Masaharu ;
Horie, Hideaki ;
Ohsawa, Yasuhiko .
JOURNAL OF POWER SOURCES, 2010, 195 (02) :567-573
[7]   Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution [J].
Jarvis, Karalee A. ;
Deng, Zengqiang ;
Allard, Lawrence F. ;
Manthiram, Arumugam ;
Ferreira, Paulo J. .
CHEMISTRY OF MATERIALS, 2011, 23 (16) :3614-3621
[8]   Anomalous capacity and cycling stability of xLi2MnO3•(1-x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50°C [J].
Johnson, Christopher S. ;
Li, Naichao ;
Lefief, Christina ;
Thackeray, Michael M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) :787-795
[9]   Electrochemical performance of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 modified by carbons as cathode materials [J].
Ju, Jeong-Hun ;
Cho, Sung-Woo ;
Hwang, Seung-Gi ;
Yun, Su-Ryeon ;
Lee, Youngil ;
Jeong, Han Mo ;
Hwang, Moon-Jin ;
Kim, Kwang Man ;
Ryu, Kwang-Sun .
ELECTROCHIMICA ACTA, 2011, 56 (24) :8791-8796
[10]   Interpreting the structural and electrochemical complexity of 0.5Li2MnO3•0.5LiMO2 electrodes for lithium batteries (M = Mn0.5-xNi0.5-xCo2x, 0≤x≤0.5) [J].
Kang, S.-H. ;
Kempgens, P. ;
Greenbaum, S. ;
Kropf, A. J. ;
Amine, K. ;
Thackeray, M. M. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (20) :2069-2077