Integration of single-cell multi-omics data by regression analysis on unpaired observations

被引:5
|
作者
Yuan, Qiuyue
Duren, Zhana [1 ]
机构
[1] Clemson Univ, Ctr Human Genet, Greenwood, SC 29646 USA
关键词
Single-cell multi-omics; Regression model on unpaired observations; Cis-regulatory network;
D O I
10.1186/s13059-022-02726-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Despite recent developments, it is hard to profile all multi-omics single-cell data modalities on the same cell. Thus, huge amounts of single-cell genomics data of unpaired observations on different cells are generated. We propose a method named UnpairReg for the regression analysis on unpaired observations to integrate single-cell multi-omics data. On real and simulated data, UnpairReg provides an accurate estimation of cell gene expression where only chromatin accessibility data is available. The cis-regulatory network inferred from UnpairReg is highly consistent with eQTL mapping. UnpairReg improves cell type identification accuracy by joint analysis of single-cell gene expression and chromatin accessibility data.
引用
收藏
页数:19
相关论文
共 39 条
  • [21] Bi-order multimodal integration of single-cell data
    Dou, Jinzhuang
    Liang, Shaoheng
    Mohanty, Vakul
    Miao, Qi
    Huang, Yuefan
    Liang, Qingnan
    Cheng, Xuesen
    Kim, Sangbae
    Choi, Jongsu
    Li, Yumei
    Li, Li
    Daher, May
    Basar, Rafet
    Rezvani, Katayoun
    Chen, Rui
    Chen, Ken
    GENOME BIOLOGY, 2022, 23 (01)
  • [22] Bi-order multimodal integration of single-cell data
    Jinzhuang Dou
    Shaoheng Liang
    Vakul Mohanty
    Qi Miao
    Yuefan Huang
    Qingnan Liang
    Xuesen Cheng
    Sangbae Kim
    Jongsu Choi
    Yumei Li
    Li Li
    May Daher
    Rafet Basar
    Katayoun Rezvani
    Rui Chen
    Ken Chen
    Genome Biology, 23
  • [23] Single-cell multi-omics sequencing reveals chromosome copy number inconsistency between trophectoderm and inner cell mass in human reconstituted embryos after spindle transfer
    Zhong, Wei
    Shen, Kexin
    Xue, Xiaohui
    Wang, Wei
    Wang, Weizhou
    Zuo, Haiyang
    Guo, Yiming
    Yao, Shun
    Sun, Mingyue
    Song, Chunlan
    Wang, Qihang
    Ruan, Zhuolin
    Yao, Xinyi
    Shang, Wei
    HUMAN REPRODUCTION, 2023, 38 (11) : 2137 - 2153
  • [24] Applications of Single-Cell Omics to Dissect Tumor Microenvironment
    Guo, Tingting
    Li, Weimin
    Cai, Xuyu
    FRONTIERS IN GENETICS, 2020, 11
  • [25] Advances in Integrated Multi-omics Analysis for Drug-Target Identification
    Du, Peiling
    Fan, Rui
    Zhang, Nana
    Wu, Chenyuan
    Zhang, Yingqian
    BIOMOLECULES, 2024, 14 (06)
  • [26] SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data
    Nour El Kazwini
    Guido Sanguinetti
    Genome Biology, 25
  • [27] SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data
    El Kazwini, Nour
    Sanguinetti, Guido
    GENOME BIOLOGY, 2024, 25 (01)
  • [28] Single-Cell Multi-Omics Analysis Reveals the Role of CX3CR1+ GNLY+ CD8+ T Cells in Improving Survival of Patients with Relapse/Refractory Hematologic Malignancies after Haplo plus Cord HSCT
    Li, Hua
    Zhang, Zheyang
    Zhu, Ming
    Li, Xiaofan
    Chen, Tao
    Chen, Yuanzhong
    Huang, Jialiang
    Li, Nainong
    BLOOD, 2022, 140 : 7349 - 7349
  • [29] Integration of single-cell transcriptome and proteome technologies: Toward spatial resolution levels
    He, Liyong
    Wang, Wenjia
    Dang, Kaitong
    Ge, Qinyu
    Zhao, Xiangwei
    VIEW, 2023, 4 (05)
  • [30] Integration of single-cell transcriptome and chromatin accessibility and its application on tumor investigation
    Yang, Chunyuan
    Jin, Yan
    Yin, Yuxin
    LIFE MEDICINE, 2024, 3 (02):