BALANCED TRIPARTITE ENTANGLEMENT, THE ALTERNATING GROUP A4 AND THE LIE ALGEBRA sl(3, C) ⊕ u(1)

被引:1
作者
Planat, Michel [1 ]
Levay, Peter [2 ]
Saniga, Metod [3 ]
机构
[1] CNRS, Inst FEMTO ST, F-25044 Besancon, France
[2] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, H-1521 Budapest, Hungary
[3] Slovak Acad Sci, Astron Inst, SK-05960 Tatranska Lomnica, Slovakia
关键词
entanglement; Lie algebras; quantum computation; DECOMPOSITION;
D O I
10.1016/S0034-4877(11)00009-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss three important classes of three-qubit entangled states and their encoding into quantum gates, finite groups and Lie algebras. States of the GHZ and W-type correspond to pure tripartite and bipartite entanglement, respectively. We introduce another generic class B of three-qubit states, that have balanced entanglement over two and three parties. We show how to realize the largest cristallographic group W(E-8) in terms of three-qubit gates (with real entries) encoding states of type GHZ or W. Then, we describe a peculiar "condensation" of W(E-8) into the four-letter alternating group A(4), obtained from a chain of maximal subgroups. Group A(4) is realized from two B-type generators and found to correspond to the Lie algebra sl(3,C) circle plus u(1). Possible applications of our findings to particle physics and the structure of genetic code are also mentioned.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 30 条
[11]  
Dömötör P, 2009, EUR PHYS J D, V53, P237, DOI 10.1140/epjd/e2009-00106-9
[12]   String triality, black hole entropy, and Cayley's hyperdeterminant [J].
Duff, M. J. .
PHYSICAL REVIEW D, 2007, 76 (02)
[13]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[14]   A crystal base for the genetic code [J].
Frappat, L ;
Sorba, P ;
Sciarrino, A .
PHYSICS LETTERS A, 1998, 250 (1-3) :214-221
[15]  
FRAPPAT L, 2000, DICT LIE ALGEBRAS SU, P260
[16]  
Helgason S., 1978, DIFFERENTIAL GEOMETR
[17]   ALGEBRAIC MODEL FOR THE EVOLUTION OF THE GENETIC-CODE [J].
HORNOS, JEM ;
HORNOS, YMM .
PHYSICAL REVIEW LETTERS, 1993, 71 (26) :4401-4404
[18]   From the Mendeleev periodic table to particle physics and back to the periodic table [J].
Kibler M.R. .
Foundations of Chemistry, 2007, 9 (3) :221-234
[19]   An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group [J].
Kibler, Maurice R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (35)
[20]   Group-theoretical approach to entanglement [J].
Korbicz, J. K. ;
Lewenstein, M. .
PHYSICAL REVIEW A, 2006, 74 (02)