Iris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifier

被引:39
作者
Ahmadi, Neda [1 ]
Akbarizadeh, Gholamreza [2 ]
机构
[1] Shahid Chamran Univ Ahvaz, Fac Engn, Dept Comp Engn, Ahvaz, Iran
[2] Shahid Chamran Univ Ahvaz, Fac Engn, Dept Elect Engn, Ahvaz, Iran
关键词
Iris tissue recognition; Feature extraction; GLDM; Imperialist competitive algorithm; Multi-layer perceptron neural network; SEGMENTATION; FRAMEWORK;
D O I
10.1007/s00521-018-3754-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of iris tissue for identification is an accurate and reliable system for identifying people. This method consists of four main processing stages, namely segmentation, normalization, feature extraction, and matching. In this study, a new method of feature extraction and classification based on gray-level difference method and hybrid MLPNN-ICA classifier is proposed. For experimental results, our study is implemented on CASIA-Iris V3 dataset and UCI machine learning repository datasets.
引用
收藏
页码:2267 / 2281
页数:15
相关论文
共 38 条
[1]  
ABHYANKAR A, 2010, INT J COMPUT THEORY, V2, P233, DOI DOI 10.7763/IJCTE.2010.V2.145
[2]  
Ahmadi N., 2016, TRANSYLVANIAN REV, V24, P151
[3]  
Ahmadi N, 2018, J SOFT COMPUT DECIS, V5, P16
[4]  
Ahmadi N., 2015, J Soft Comput Decis Support Syst, V2, P26
[5]   Hybrid robust iris recognition approach using iris image pre-processing, two-dimensional gabor features and multi-layer perceptron neural network/PSO [J].
Ahmadi, Neda ;
Akbarizadeh, Gholamreza .
IET BIOMETRICS, 2018, 7 (02) :153-162
[6]   An overview of iris recognition: a bibliometric analysis of the period 2000-2012 [J].
Alvarez-Betancourt, Yuniol ;
Garcia-Silvente, Miguel .
SCIENTOMETRICS, 2014, 101 (03) :2003-2033
[7]  
[Anonymous], DAT HUM IR
[8]  
Atashpaz-Gargari E, 2007, IEEE C EVOL COMPUTAT, P4661, DOI 10.1109/cec.2007.4425083
[9]   Determining diabetes using iris recognition system [J].
Bansal, Atul ;
Agarwal, Ravinder ;
Sharma, R. K. .
INTERNATIONAL JOURNAL OF DIABETES IN DEVELOPING COUNTRIES, 2015, 35 (04) :432-438
[10]  
Belkin M, 2006, J MACH LEARN RES, V7, P2399