AvNAC030, a NAC Domain Transcription Factor, Enhances Salt Stress Tolerance in Kiwifruit

被引:24
|
作者
Li, Ming [1 ]
Wu, Zhiyong [1 ]
Gu, Hong [1 ]
Cheng, Dawei [1 ]
Guo, Xizhi [1 ]
Li, Lan [1 ]
Shi, Caiyun [1 ]
Xu, Guoyi [1 ]
Gu, Shichao [1 ]
Abid, Muhammad [1 ,2 ]
Zhong, Yunpeng [1 ]
Qi, Xiujuan [1 ]
Chen, Jinyong [1 ]
机构
[1] Chinese Acad Agr Sci, Zhengzhou Fruit Res Inst, Zhengzhou 450009, Peoples R China
[2] Chinese Acad Sci, Lushan Bot Garden, Jiujiang 332900, Peoples R China
基金
中国国家自然科学基金;
关键词
kiwifruit; salt tolerance; oxidative stress; ROS; NAC; GENOME-WIDE IDENTIFICATION; FACTOR FAMILY; EXPRESSION ANALYSIS; DROUGHT TOLERANCE; CONSERVED DOMAIN; GENES; ARABIDOPSIS; DIVERSITY; BIOSYNTHESIS; ACCUMULATION;
D O I
10.3390/ijms222111897
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Kiwifruit (Actinidia chinensis Planch) is suitable for neutral acid soil. However, soil salinization is increasing in kiwifruit production areas, which has adverse effects on the growth and development of plants, leading to declining yields and quality. Therefore, analyzing the salt tolerance regulation mechanism can provide a theoretical basis for the industrial application and germplasm improvement of kiwifruit. We identified 120 NAC members and divided them into 13 subfamilies according to phylogenetic analysis. Subsequently, we conducted a comprehensive and systematic analysis based on the conserved motifs, key amino acid residues in the NAC domain, expression patterns, and protein interaction network predictions and screened the candidate gene AvNAC030. In order to study its function, we adopted the method of heterologous expression in Arabidopsis. Compared with the control, the overexpression plants had higher osmotic adjustment ability and improved antioxidant defense mechanism. These results suggest that AvNAC030 plays a positive role in the salt tolerance regulation mechanism in kiwifruit.
引用
收藏
页数:62
相关论文
共 50 条
  • [21] TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis
    Quanjun Huang
    Yan Wang
    Bin Li
    Junli Chang
    Mingjie Chen
    Kexiu Li
    Guangxiao Yang
    Guangyuan He
    BMC Plant Biology, 15
  • [22] A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice
    Fang, Yujie
    Liao, Kaifeng
    Du, Hao
    Xu, Yan
    Song, Huazhi
    Li, Xianghua
    Xiong, Lizhong
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (21) : 6803 - 6817
  • [23] NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato
    Thirumalaikumar, Venkatesh P.
    Devkar, Vikas
    Mehterov, Nikolay
    Ali, Shawkat
    Ozgur, Rengin
    Turkan, Ismail
    Mueller-Roeber, Bernd
    Balazadeh, Salma
    PLANT BIOTECHNOLOGY JOURNAL, 2018, 16 (02) : 354 - 366
  • [24] The StDREB1 transcription factor is involved in oxidative stress response and enhances tolerance to salt stress
    Bouaziz, Donia
    Jbir, Rania
    Charfeddine, Safa
    Saidi, Mohamed Najib
    Gargouri-Bouzid, Radhia
    PLANT CELL TISSUE AND ORGAN CULTURE, 2015, 121 (01) : 237 - 248
  • [25] The NAC transcription factor CaNAC064 is a regulator of cold stress tolerance in peppers
    Hou, Xiao-ming
    Zhang, Hua-feng
    Liu, Su-ya
    Wang, Xin-ke
    Zhang, Yu-meng
    Meng, Yuan-cheng
    Luo, Dan
    Chen, Ru-gang
    PLANT SCIENCE, 2020, 291
  • [26] The WRKY Transcription Factor GmWRKY12 Confers Drought and Salt Tolerance in Soybean
    Shi, Wen-Yan
    Du, Yong-Tao
    Ma, Jian
    Min, Dong-Hong
    Jin, Long-Guo
    Chen, Jun
    Chen, Ming
    Zhou, Yong-Bin
    Ma, You-Zhi
    Xu, Zhao-Shi
    Zhang, Xiao-Hong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (12)
  • [27] The StDREB1 transcription factor is involved in oxidative stress response and enhances tolerance to salt stress
    Donia Bouaziz
    Rania Jbir
    Safa Charfeddine
    Mohamed Najib Saidi
    Radhia Gargouri-Bouzid
    Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 121 : 237 - 248
  • [28] Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis
    Shinde, Harshraj
    Dudhate, Ambika
    Tsugama, Daisuke
    Gupta, Shashi K.
    Liu, Shenkui
    Takano, Tetsuo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 135 : 546 - 553
  • [29] Overexpression of a novel NAC-type tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco
    Li, Xiao-Dong
    Zhuang, Kun-Yang
    Liu, Zhong-Ming
    Yang, Dong-Yue
    Ma, Na-Na
    Meng, Qing-Wei
    JOURNAL OF PLANT PHYSIOLOGY, 2016, 204 : 54 - 65
  • [30] The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice
    Shen, Jiabin
    Lv, Bo
    Luo, Liqiong
    He, Jianmei
    Mao, Chanjuan
    Xi, Dandan
    Ming, Feng
    SCIENTIFIC REPORTS, 2017, 7