A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes

被引:19
作者
Niethammer, M. [1 ]
Marschall, H. [1 ]
Kunkelmann, C. [2 ]
Bothe, D. [1 ]
机构
[1] Tech Univ Darmstadt, Math Modeling & Anal Grp, Alarich Weiss Str 10, D-64287 Darmstadt, Germany
[2] GCP RC BASF SE, Ludwigshafen, Germany
关键词
benchmark results; finite volume method; planar contraction; velocity-stress-coupling; viscoelastic fluid; HIGH WEISSENBERG NUMBER; STRESS-DEFORMATION RELATIONS; SIMULATION; DYNAMICS; TENSOR;
D O I
10.1002/fld.4411
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A robust finite volume method for viscoelastic flow analysis on general unstructured meshes is developed. It is built upon a general-purpose stabilization framework for high Weissenberg number flows. The numerical framework provides full combinatorial flexibility between different kinds of rheological models on the one hand, and effective stabilization methods on the other hand. A special emphasis is put on the velocity-stress-coupling on colocated computational grids. Using special face interpolation techniques, a semi-implicit stress interpolation correction is proposed to correct the cell-face interpolation of the stress in the divergence operator of the momentum balance. Investigating the entry-flow problem of the 4:1 contraction benchmark, we demonstrate that the numerical methods are robust over a wide range of Weissenberg numbers and significantly alleviate the high Weissenberg number problem. The accuracy of the results is evaluated in a detailed mesh convergence study.
引用
收藏
页码:131 / 166
页数:36
相关论文
共 50 条
  • [21] A conservative finite volume method for incompressible two-phase flows on unstructured meshes
    Parameswaran, S.
    Mandal, J. C.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2024, 85 (04) : 426 - 453
  • [22] Finite Volume Lattice Boltzmann Method for Nearly Incompressible Flows on Arbitrary Unstructured Meshes
    Li, Weidong
    Luo, Li-Shi
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (02) : 301 - 324
  • [23] A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes
    Lipnikov, K.
    Svyatskiy, D.
    Vassilevski, Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (11) : 4017 - 4032
  • [24] High accuracy finite volume method for solving nonlinear aeroacoustics problems on unstructured meshes
    Institute for Mathematical Modelling, RAS, Moscow, Russia
    不详
    不详
    不详
    不详
    不详
    Chin J Aeronaut, 2006, 2 (97-104): : 97 - 104
  • [25] A comparison of stabilisation approaches for finite-volume simulation of viscoelastic fluid flow
    Chen, Xingyuan
    Marschall, Holger
    Schaefer, Michael
    Bothe, Dieter
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2013, 27 (6-7) : 229 - 250
  • [26] Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM
    Koch, Max
    Lechner, Christiane
    Reuter, Fabian
    Koehler, Karsten
    Mettin, Robert
    Lauterborn, Werner
    COMPUTERS & FLUIDS, 2016, 126 : 71 - 90
  • [27] Simulation of single- and two-phase flows on sliding unstructured meshes using finite volume method
    Basara, B
    Alajbegovic, A
    Beader, D
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 45 (10) : 1137 - 1159
  • [28] An integrated lattice Boltzmann and finite volume method for the simulation of viscoelastic fluid flows
    Zou, Shun
    Yuan, Xue-Feng
    Yang, Xuejun
    Yi, Wei
    Xu, Xinhai
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2014, 211 : 99 - 113
  • [29] A fully-implicit finite-volume method for multi-fluid reactive and collisional magnetized plasmas on unstructured meshes
    Laguna, A. Alvarez
    Lani, A.
    Deconinck, H.
    Mansour, N. N.
    Poedts, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 318 : 252 - 276
  • [30] A volume-conserving balanced-force level set method on unstructured meshes using a control volume finite element formulation
    Lin, Stephen
    Yan, Jinhui
    Kats, Dmitriy
    Wagner, Gregory J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 380 : 119 - 142