A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes

被引:18
|
作者
Niethammer, M. [1 ]
Marschall, H. [1 ]
Kunkelmann, C. [2 ]
Bothe, D. [1 ]
机构
[1] Tech Univ Darmstadt, Math Modeling & Anal Grp, Alarich Weiss Str 10, D-64287 Darmstadt, Germany
[2] GCP RC BASF SE, Ludwigshafen, Germany
关键词
benchmark results; finite volume method; planar contraction; velocity-stress-coupling; viscoelastic fluid; HIGH WEISSENBERG NUMBER; STRESS-DEFORMATION RELATIONS; SIMULATION; DYNAMICS; TENSOR;
D O I
10.1002/fld.4411
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A robust finite volume method for viscoelastic flow analysis on general unstructured meshes is developed. It is built upon a general-purpose stabilization framework for high Weissenberg number flows. The numerical framework provides full combinatorial flexibility between different kinds of rheological models on the one hand, and effective stabilization methods on the other hand. A special emphasis is put on the velocity-stress-coupling on colocated computational grids. Using special face interpolation techniques, a semi-implicit stress interpolation correction is proposed to correct the cell-face interpolation of the stress in the divergence operator of the momentum balance. Investigating the entry-flow problem of the 4:1 contraction benchmark, we demonstrate that the numerical methods are robust over a wide range of Weissenberg numbers and significantly alleviate the high Weissenberg number problem. The accuracy of the results is evaluated in a detailed mesh convergence study.
引用
收藏
页码:131 / 166
页数:36
相关论文
共 50 条
  • [21] On boundary conditions in the finite volume lattice Boltzmann method on unstructured meshes
    Peng, GW
    Xi, HW
    Chou, SH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (06): : 1003 - 1016
  • [22] An enhanced polygonal finite-volume method for unstructured hybrid meshes
    Ahn, Hyung Taek
    Carey, Graham F.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (01) : 29 - 46
  • [23] The design of improved smoothing operators for finite volume flow solvers on unstructured meshes
    de Foy, B
    Dawes, W
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 36 (08) : 903 - 923
  • [24] Numerical simulation of fluid flows using an unstructured finite volume method with adaptive tri-tree grids
    Hu, ZZ
    Greaves, DM
    Wu, GX
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 39 (05) : 403 - 440
  • [25] PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes
    Cameron Talischi
    Glaucio H. Paulino
    Anderson Pereira
    Ivan F. M. Menezes
    Structural and Multidisciplinary Optimization, 2012, 45 : 329 - 357
  • [26] PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes
    Talischi, Cameron
    Paulino, Glaucio H.
    Pereira, Anderson
    Menezes, Ivan F. M.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2012, 45 (03) : 329 - 357
  • [27] Analysis on general meshes of a discrete duality finite volume method for subsurface flow problems
    Njifenjou, A.
    Donfack, H.
    Moukouop-Nguena, I.
    COMPUTATIONAL GEOSCIENCES, 2013, 17 (02) : 391 - 415
  • [28] Analysis on general meshes of a discrete duality finite volume method for subsurface flow problems
    A. Njifenjou
    H. Donfack
    I. Moukouop-Nguena
    Computational Geosciences, 2013, 17 : 391 - 415
  • [29] A finite-volume method for simulating contact lines on unstructured meshes in a conservative level-set framework
    Pertant, Savinien
    Bernard, Manuel
    Ghigliotti, Giovanni
    Balarac, Guillaume
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 444
  • [30] NUMERICAL MODELING OF VISCOELASTIC LIQUIDS USING A FINITE-VOLUME METHOD
    DARWISH, MS
    WHITEMAN, JR
    BEVIS, MJ
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1992, 45 (03) : 311 - 337