MULTI-SCALE SAMPLE SELECTION BASED ON STATISTICAL CHARACTERISTICS FOR OBJECT DETECTION

被引:3
作者
Li, Zhiguo [1 ,2 ]
Yuan, Yuan [1 ,2 ]
Ma, Dandan [2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021) | 2021年
基金
中国国家自然科学基金;
关键词
Object detection; Multi-scale; Attention module; Feature pyramid networks;
D O I
10.1109/ICASSP39728.2021.9413848
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In the domain of object detection, automatically selecting positive and negative samples methods have become a hot research topic in recent years. However, most of them focus on improving the sampling process but ignore the relationship between object size and feature map, in which the shallow and deep feature layers can capture small and large size objects well respectively. In this paper, we propose a multi-scale sample selection based on statistical characteristics for object detection. To improve the robustness of the Intersection over Union (IoU) threshold, we design a multi-scale sample selection module (MSSM), which takes full advantage of different feature layers. Besides, we introduce a multi-scale attention module (MSAM) by embedding in the feature pyramid networks (FPN) to improve the efficiency of feature fusion. Experiments on MS COCO dataset demonstrate that our method achieves significant improvement over the state-of-the-art methods.
引用
收藏
页码:1485 / 1489
页数:5
相关论文
共 50 条
  • [31] Dynamic multi-scale loss optimization for object detection
    Yihao Luo
    Xiang Cao
    Juntao Zhang
    Peng Cheng
    Tianjiang Wang
    Qi Feng
    Multimedia Tools and Applications, 2023, 82 : 2349 - 2367
  • [32] MGFPN: Enhancing multi-scale feature for object detection
    He, Weiming
    Wu, You
    Xiao, Jing
    Cao, Yang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (06) : 11171 - 11181
  • [33] Multi-scale redistribution feature pyramid for object detection
    Qian, Huifang
    Guo, Jiahao
    Zhou, Xuan
    AI COMMUNICATIONS, 2022, 35 (01) : 15 - 30
  • [34] Object Detection Using Multi-Scale Balanced Sampling
    Yu, Hang
    Gong, Jiulu
    Chen, Derong
    APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [35] Multi-scale coupled attention for visual object detection
    Li, Fei
    Yan, Hongping
    Shi, Linsu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [36] AUTONOMOUS MULTI-SCALE OBJECT DETECTION WITH HOUGH FORESTS
    Scalzo, Maria
    Velipasalar, Senem
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1643 - 1647
  • [37] MRMNet: Multi-scale residual multi-branch neural network for object detection
    Dong, Yongsheng
    Liu, Yafeng
    Li, Xuelong
    NEUROCOMPUTING, 2024, 596
  • [38] CF-YOLOX: An Autonomous Driving Detection Model for Multi-Scale Object Detection
    Wu, Shuiye
    Yan, Yunbing
    Wang, Weiqiang
    SENSORS, 2023, 23 (08)
  • [39] Deep Learning for Multi-scale Object Detection: A Survey
    Chen K.-Q.
    Zhu Z.-L.
    Deng X.-M.
    Ma C.-X.
    Wang H.-A.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (04): : 1201 - 1227
  • [40] Remote Sensing Rotating Object Detection Based on Multi-Scale Feature Extraction
    Wu, Luobing
    Gu, Yuhai
    Wu, Wenhao
    Fan, Shuaixin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (12)