MULTI-SCALE SAMPLE SELECTION BASED ON STATISTICAL CHARACTERISTICS FOR OBJECT DETECTION

被引:3
|
作者
Li, Zhiguo [1 ,2 ]
Yuan, Yuan [1 ,2 ]
Ma, Dandan [2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021) | 2021年
基金
中国国家自然科学基金;
关键词
Object detection; Multi-scale; Attention module; Feature pyramid networks;
D O I
10.1109/ICASSP39728.2021.9413848
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In the domain of object detection, automatically selecting positive and negative samples methods have become a hot research topic in recent years. However, most of them focus on improving the sampling process but ignore the relationship between object size and feature map, in which the shallow and deep feature layers can capture small and large size objects well respectively. In this paper, we propose a multi-scale sample selection based on statistical characteristics for object detection. To improve the robustness of the Intersection over Union (IoU) threshold, we design a multi-scale sample selection module (MSSM), which takes full advantage of different feature layers. Besides, we introduce a multi-scale attention module (MSAM) by embedding in the feature pyramid networks (FPN) to improve the efficiency of feature fusion. Experiments on MS COCO dataset demonstrate that our method achieves significant improvement over the state-of-the-art methods.
引用
收藏
页码:1485 / 1489
页数:5
相关论文
共 50 条
  • [21] Pyramid attention object detection network with multi-scale feature fusion
    Chen, Xiu
    Li, Yujie
    Nakatoh, Yoshihisa
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [22] Bridging Multi-Scale Context-Aware Representation for Object Detection
    Wang, Boying
    Ji, Ruyi
    Zhang, Libo
    Wu, Yanjun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (05) : 2317 - 2329
  • [23] Learning Discriminated Features Based on Feature Pyramid Networks and Attention for Multi-scale Object Detection
    Lu, Yunhua
    Su, Minghui
    Wang, Yong
    Liu, Zhi
    Peng, Tao
    COGNITIVE COMPUTATION, 2023, 15 (02) : 486 - 495
  • [24] Multi-scale Semantic Information Fusion for Object Detection
    Chen Hongkun
    Luo Huilan
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (07) : 2087 - 2095
  • [25] Dynamic multi-scale loss optimization for object detection
    Luo, Yihao
    Cao, Xiang
    Zhang, Juntao
    Cheng, Peng
    Wang, Tianjiang
    Feng, Qi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (02) : 2349 - 2367
  • [26] MULTI-SCALE SHARED FEATURES FOR CASCADE OBJECT DETECTION
    Lin, Zhe
    Hua, Gang
    Davis, Larry S.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1865 - 1868
  • [27] Multi-scale structural kernel representation for object detection
    Wang, Hao
    Wang, Qilong
    Li, Peihua
    Zuo, Wangmeng
    PATTERN RECOGNITION, 2021, 110
  • [28] Learning Discriminated Features Based on Feature Pyramid Networks and Attention for Multi-scale Object Detection
    Yunhua Lu
    Minghui Su
    Yong Wang
    Zhi Liu
    Tao Peng
    Cognitive Computation, 2023, 15 : 486 - 495
  • [29] DYNAMIC MULTI-SCALE LOSS BALANCE FOR OBJECT DETECTION
    Luo, Yihao
    Cao, Xiang
    Zhang, Juntao
    Cheng, Peng
    Wang, Tianjiang
    Feng, Qi
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4873 - 4877
  • [30] StairsNet: Mixed Multi-scale Network for Object Detection
    Gao, Weiyi
    Cao, Wenlong
    Zhai, Jian
    Rui, Jianwu
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 303 - 314