DGCN: Diversified Recommendation with Graph Convolutional Networks

被引:68
|
作者
Zheng, Yu [1 ,2 ]
Gao, Chen [1 ,2 ]
Chen, Liang [3 ]
Jin, Depeng [1 ,2 ]
Li, Yong [1 ,2 ]
机构
[1] Beijing Natl Res Ctr Informat Sci & Technol & Tsi, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[3] Sun Yat Sen Univ, Guangzhou, Peoples R China
来源
PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021) | 2021年
基金
中国国家自然科学基金;
关键词
Recommender systems; diversification; graph convolutional networks;
D O I
10.1145/3442381.3449835
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
These years much effort has been devoted to improving the accuracy or relevance of the recommendation system. Diversity, a crucial factor which measures the dissimilarity among the recommended items, received rather little scrutiny. Directly related to user satisfaction, diversification is usually taken into consideration after generating the candidate items. However, this decoupled design of diversification and candidate generation makes the whole system suboptimal. In this paper, we aim at pushing the diversification to the upstream candidate generation stage, with the help of Graph Convolutional Networks (GCN). Although GCN based recommendation algorithms have shown great power in modeling complex collaborative filtering effect to improve the accuracy of recommendation, how diversity changes is ignored in those advanced works. We propose to perform rebalanced neighbor discovering, category-boosted negative sampling and adversarial learning on top of GCN. We conduct extensive experiments on real-world datasets. Experimental results verify the effectiveness of our proposed method on diversification. Further ablation studies validate that our proposed method significantly alleviates the accuracy-diversity dilemma.
引用
收藏
页码:401 / 412
页数:12
相关论文
共 50 条
  • [1] Embedding Disentanglement in Graph Convolutional Networks for Recommendation
    Zhu, Tianyu
    Sun, Leilei
    Chen, Guoqing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 431 - 442
  • [2] Cliques of Graph Convolutional Networks for Recommendation
    Pan, Zhenye
    Chen, Yahong
    IEEE ACCESS, 2024, 12 : 70053 - 70064
  • [3] UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation
    Mao, Kelong
    Zhu, Jieming
    Xiao, Xi
    Lu, Biao
    Wang, Zhaowei
    He, Xiucliang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1253 - 1262
  • [4] Incorporating Price into Recommendation With Graph Convolutional Networks
    Zheng, Yu
    Gao, Chen
    He, Xiangnan
    Jin, Depeng
    Li, Yong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1609 - 1623
  • [5] Explainable Recommendation Based on Weighted Knowledge Graphs and Graph Convolutional Networks
    Boughareb, Rima
    Seridi, Hassina
    Beldjoudi, Samia
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2023, 22 (03)
  • [6] Integrating label propagation with graph convolutional networks for recommendation
    Zhang, Yihao
    Yuan, Meng
    Zhao, Chu
    Chen, Mian
    Liu, Xiaoyang
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10) : 8211 - 8225
  • [7] Integrating label propagation with graph convolutional networks for recommendation
    Yihao Zhang
    Meng Yuan
    Chu Zhao
    Mian Chen
    Xiaoyang Liu
    Neural Computing and Applications, 2022, 34 : 8211 - 8225
  • [8] Enhancing Social Recommendation With Adversarial Graph Convolutional Networks
    Yu, Junliang
    Yin, Hongzhi
    Li, Jundong
    Gao, Min
    Huang, Zi
    Cui, Lizhen
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3727 - 3739
  • [9] Multi-behavior Recommendation with Graph Convolutional Networks
    Jin, Bowen
    Gao, Chen
    He, Xiangnan
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 659 - 668
  • [10] Neighbor enhanced graph convolutional networks for node classification and recommendation
    Chen, Hao
    Huang, Zhong
    Xu, Yue
    Deng, Zengde
    Huang, Feiran
    He, Peng
    Li, Zhoujun
    KNOWLEDGE-BASED SYSTEMS, 2022, 246