Two dimensional numerical modeling of a membrane humidifier with porous media flow field for PEM fuel cell

被引:10
作者
Afshari, Ebrahim [1 ]
Houreht, Nasser Baharlou [2 ]
机构
[1] Univ Isfahan, Dept Mech Engn, Fac Engn, Esfahan, Iran
[2] Univ Tehran, Coll Engn, Sch Mech Engn, Tehran, Iran
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2015年 / 26卷 / 06期
关键词
Membrane humidifier; porous media; pressure drop; permeability; two dimensional; METAL FOAM; AIR HUMIDIFICATION; BIPOLAR/END PLATES; PERFORMANCE; SYSTEMS; DESIGN; GAS; DISTRIBUTOR; OPERATION; STACK;
D O I
10.1142/S0129183115500618
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A membrane humidifier with porous media flow field (metal foam) can provide more water transfer, low manufacturing complexity and low cost in comparison with the conventional humidifier. In this study, a two-dimensional numerical model is developed to investigate the performance of the humidifier with porous metal foam. The results indicate that the dew point increases with a decrease in the permeability, but at permeabilities lower than 10-8 the pressure drop increases extremely. At all ranges of pressures, temperatures and flow rates of humidifier inlet, the pressure drop in humidifier with porous media flow field is only about 0.5 kPa higher than that of the conventional humidifier, which is not significant and it can be ignored. An increase in the pressure at dry side inlet and wet side inlet of the humidifier results in a better humidifier performance. Humidifier performs better at high flow rates and temperatures of humidifier wet side inlet. At all ranges of pressures, flow rates and temperatures humidifier with porous metal foam indicates better performance.
引用
收藏
页数:16
相关论文
共 32 条
[1]   Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance [J].
Afshari, E. ;
Jazayeri, S. A. .
ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (04) :655-662
[2]   Analyses of heat and water transport interactions in a proton exchange membrane fuel cell [J].
Afshari, E. ;
Jazayeri, S. A. .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :423-432
[3]   Numerical predictions of performance of the proton exchange membrane fuel cell with baffle(s)-blocked flow field designs [J].
Afshari, Ebrahim ;
Houreh, Nasser Baharlou .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (16)
[4]   Effect of water phase change on temperature distribution in proton exchange membrane fuel cells [J].
Afshari, Ebrahim ;
Jazayeri, Seyed Ali ;
Barzi, Yaser Mollayi .
HEAT AND MASS TRANSFER, 2010, 46 (11-12) :1295-1305
[5]   Analytical model of a membrane humidifier for polymer electrolyte membrane fuel cell systems [J].
Bhatia, Divesh ;
Sabharwal, Mayank ;
Duelk, Christian .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 58 (1-2) :702-717
[6]   Water flux in membrane fuel cell humidifiers:: Flow rate and channel location effects [J].
Cave, R. ;
Merida, W. .
JOURNAL OF POWER SOURCES, 2008, 175 (01) :408-418
[7]   A thermodynamic model of membrane humidifiers for PEM fuel cell humidification control [J].
Chen, DM ;
Peng, H .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2005, 127 (03) :424-432
[8]   An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control [J].
Chen, Dongmei ;
Li, Wei ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2008, 180 (01) :461-467
[9]   Two-dimensional model for proton exchange membrane fuel cells [J].
Gurau, V ;
Liu, HT ;
Kakac, S .
AICHE JOURNAL, 1998, 44 (11) :2410-2422
[10]   Three-dimensional CFD modeling of a planar membrane humidifier for PEM fuel cell systems [J].
Houreh, Nasser Baharlou ;
Afshari, Ebrahim .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (27) :14969-14979