Robustness of chiral edge modes in fractal-like lattices below two dimensions: A case study

被引:13
作者
Fischer, Sonja [1 ,2 ]
van Hooft, Michal [1 ,2 ]
van der Meijden, Twan [1 ,2 ]
Smith, Cristiane Morais [1 ,2 ]
Fritz, Lars [1 ,2 ]
Fremling, Mikael [1 ,2 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
[2] Univ Utrecht, Ctr Extreme Matter & Emergent Phenomena, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 04期
关键词
SIERPINSKI TRIANGLES; CONSTRUCTION; CRYSTALS;
D O I
10.1103/PhysRevResearch.3.043103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One of the most prominent characteristics of two-dimensional quantum Hall systems are chiral edge modes. Their existence is a consequence of the bulk-boundary correspondence and their stability guarantees the quantization of the transverse conductance. In this paper, we study two microscopic models, the Hofstadter lattice model and an extended version of Haldane's Chern insulator. Both models host quantum Hall phases in two dimensions. We transfer them to lattice implementations of fractals with a dimension between one and two and study the existence and robustness of their edge states. Our main observation is that, contrary to their two-dimensional counterpart, there is no universal behavior of the edge modes in fractals. Instead, their presence and stability critically depends on details of the models and the lattice realization of the fractal.
引用
收藏
页数:18
相关论文
共 49 条
[1]   THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM HALL-EFFECT [J].
BELLISSARD, J ;
VANELST, A ;
SCHULZBALDES, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5373-5451
[2]   Quantized electric multipole insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
SCIENCE, 2017, 357 (6346) :61-66
[3]  
Bernevig B. A., 2013, Topological Insulators and Topological Superconductors
[4]   Topological phases in a two-dimensional lattice: Magnetic field versus spin-orbit coupling [J].
Beugeling, W. ;
Goldman, N. ;
Smith, C. Morais .
PHYSICAL REVIEW B, 2012, 86 (07)
[5]   Quantum transport in self-similar graphene carpets [J].
Bouzerar, G. ;
Mayou, D. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[6]   Topology in the Sierpinski-Hofstadter problem [J].
Brzezinska, Marta ;
Cook, Ashley M. ;
Neupert, Titus .
PHYSICAL REVIEW B, 2018, 98 (20)
[7]  
Diehl S, 2011, NAT PHYS, V7, P971, DOI [10.1038/NPHYS2106, 10.1038/nphys2106]
[8]   Existence of robust edge currents in Sierpinski fractals [J].
Fremling, Mikael ;
van Hooft, Michal ;
Smith, Cristiane Morais ;
Fritz, Lars .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[9]   Topological Crystalline Insulators [J].
Fu, Liang .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)
[10]  
Grushin A. G., ARXIV201002851