Cesaro and Riesz summability with varying parameters of multi-dimensional Walsh-Fourier series

被引:5
作者
Weisz, F. [1 ]
机构
[1] Eotvos L Univ, Dept Numer Anal, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
关键词
Hardy space; atomic decomposition; Cesaro and Riesz summability; varying parameter; CONVERGENCE;
D O I
10.1007/s10474-020-01024-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the maximal operator of subsequences of the Cesaro and Riesz means with varying parameters is bounded from the dyadic Hardy space H-p to L-p. This implies an almost everywhere convergence for the subsequences of tqoo.
引用
收藏
页码:292 / 312
页数:21
相关论文
共 30 条
[1]   CONVERGENCE OF CESARO MEANS WITH VARYING PARAMETERS OF WALSH-FOURIER SERIES [J].
Abu Joudeh, Anas Ahmad ;
Gat, Gyorgy .
MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) :303-317
[3]  
[Anonymous], 2004, Classical and modern Fourier analysis
[4]  
Butzer P. L., 1971, FOURIER ANAL APPROXI
[5]   SOME RECENT DEVELOPMENTS IN FOURIER-ANALYSIS AND HP-THEORY ON PRODUCT DOMAINS [J].
CHANG, SYA ;
FEFFERMAN, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :1-43
[6]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[8]  
Fejér L, 1904, MATH ANN, V58, P51