Some Remarks on Prediction of Protein-Protein Interaction with Machine Learning

被引:17
作者
Zhang, Shao-Wu [1 ,2 ]
Wei, Ze-Gang [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Coll Automat, Xian 710072, Peoples R China
[2] Minist Educ, Key Lab Informat Fus Technol, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Protein-protein interaction; prediction; dataset construction; sequence representation; machine learning; cross-validation test; AMINO-ACID-COMPOSITION; MULTIPLE CLASSIFIER FUSION; SEQUENCE-BASED PREDICTION; SUPPORT VECTOR MACHINE; LARGE-SCALE PREDICTION; SUBCELLULAR-LOCALIZATION; GENE ONTOLOGY; EVOLUTIONARY INFORMATION; DISCOVERING PATTERNS; INTERACTION NETWORKS;
D O I
10.2174/1573406411666141230095838
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Protein-protein interactions (PPIs) play a key role in many cellular processes. Uncovering the PPIs and their function within the cell is a challenge of post-genomic biology and will improve our understanding of disease and help in the development of novel methods for disease diagnosis and forensics. The experimental methods currently used to identify PPIs are both time-consuming and expensive, and high throughput experimental results have shown both high false positive beside false negative information for protein interaction. These obstacles could be overcome by developing computational approaches to predict PPIs and validate the obtained experimental results. In this work, we will describe the recent advances in predicting protein-protein interaction from the following aspects: i) the benchmark dataset construction, ii) the sequence representation approaches, iii) the common machine learning algorithms, and iv) the cross-validation test methods and assessment metrics.
引用
收藏
页码:254 / 264
页数:11
相关论文
共 145 条
[1]   Structure-based assembly of protein complexes in yeast [J].
Aloy, P ;
Böttcher, B ;
Ceulemans, H ;
Leutwein, C ;
Mellwig, C ;
Fischer, S ;
Gavin, AC ;
Bork, P ;
Superti-Furga, G ;
Serrano, L ;
Russell, RB .
SCIENCE, 2004, 303 (5666) :2026-2029
[2]   InterPreTS: protein Interaction Prediction through Tertiary Structure [J].
Aloy, P ;
Russell, RB .
BIOINFORMATICS, 2003, 19 (01) :161-162
[3]   Interrogating protein interaction networks through structural biology [J].
Aloy, P ;
Russell, RB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5896-5901
[4]  
[Anonymous], 2013, J. Biomed. Sci. Eng, DOI DOI 10.4236/JBISE.2013.64054
[5]   ConSurf: An algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information [J].
Armon, A ;
Graur, D ;
Ben-Tal, N .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (01) :447-463
[6]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[7]   Predicting functional gene links from phylogenetic-statistical analyses of whole genomes [J].
Barker, D ;
Pagel, M .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (01) :24-31
[8]   Choosing negative examples for the prediction of protein-protein interactions [J].
Ben-Hur, A ;
Noble, WS .
BMC BIOINFORMATICS, 2006, 7 (Suppl 1)
[9]   Kernel methods for predicting protein-protein interactions [J].
Ben-Hur, A ;
Noble, WS .
BIOINFORMATICS, 2005, 21 :I38-I46
[10]   Support Vector Machines and Kernels for Computational Biology [J].
Ben-Hur, Asa ;
Ong, Cheng Soon ;
Sonnenburg, Soeren ;
Schoelkopf, Bernhard ;
Raetsch, Gunnar .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (10)