Some Remarks on Prediction of Protein-Protein Interaction with Machine Learning

被引:17
|
作者
Zhang, Shao-Wu [1 ,2 ]
Wei, Ze-Gang [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Coll Automat, Xian 710072, Peoples R China
[2] Minist Educ, Key Lab Informat Fus Technol, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Protein-protein interaction; prediction; dataset construction; sequence representation; machine learning; cross-validation test; AMINO-ACID-COMPOSITION; MULTIPLE CLASSIFIER FUSION; SEQUENCE-BASED PREDICTION; SUPPORT VECTOR MACHINE; LARGE-SCALE PREDICTION; SUBCELLULAR-LOCALIZATION; GENE ONTOLOGY; EVOLUTIONARY INFORMATION; DISCOVERING PATTERNS; INTERACTION NETWORKS;
D O I
10.2174/1573406411666141230095838
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Protein-protein interactions (PPIs) play a key role in many cellular processes. Uncovering the PPIs and their function within the cell is a challenge of post-genomic biology and will improve our understanding of disease and help in the development of novel methods for disease diagnosis and forensics. The experimental methods currently used to identify PPIs are both time-consuming and expensive, and high throughput experimental results have shown both high false positive beside false negative information for protein interaction. These obstacles could be overcome by developing computational approaches to predict PPIs and validate the obtained experimental results. In this work, we will describe the recent advances in predicting protein-protein interaction from the following aspects: i) the benchmark dataset construction, ii) the sequence representation approaches, iii) the common machine learning algorithms, and iv) the cross-validation test methods and assessment metrics.
引用
收藏
页码:254 / 264
页数:11
相关论文
共 50 条
  • [1] Machine learning on protein-protein interaction prediction: models, challenges and trends
    Tang, Tao
    Zhang, Xiaocai
    Liu, Yuansheng
    Peng, Hui
    Zheng, Binshuang
    Yin, Yanlin
    Zeng, Xiangxiang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)
  • [2] Machine-learning techniques for the prediction of protein-protein interactions
    Sarkar, Debasree
    Saha, Sudipto
    JOURNAL OF BIOSCIENCES, 2019, 44 (04)
  • [3] Computational Prediction of Protein-Protein Interaction Networks: Algorithms and Resources
    Zahiri, Javad
    Bozorgmehr, Joseph Hannon
    Masoudi-Nejad, Ali
    CURRENT GENOMICS, 2013, 14 (06) : 397 - 414
  • [4] Glioma stages prediction based on machine learning algorithm combined with protein-protein interaction networks
    Niu, Bing
    Liang, Chaofeng
    Lu, Yi
    Zhao, Manman
    Chen, Qin
    Zhang, Yuhui
    Zheng, Linfeng
    Chou, Kuo-Chen
    GENOMICS, 2020, 112 (01) : 837 - 847
  • [5] Prediction of Protein-Protein Interaction with Pairwise Kernel Support Vector Machine
    Zhang, Shao-Wu
    Hao, Li-Yang
    Zhang, Ting-He
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (02): : 3220 - 3233
  • [6] Deep learning frameworks for protein-protein interaction prediction
    Hu, Xiaotian
    Feng, Cong
    Ling, Tianyi
    Chen, Ming
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 3223 - 3233
  • [7] An integration of deep learning with feature embedding for protein-protein interaction prediction
    Yao, Yu
    Du, Xiuquan
    Diao, Yanyu
    Zhu, Huaixu
    PEERJ, 2019, 7
  • [8] Advances in the Prediction of Protein Subcellular Locations with Machine Learning
    Zhang, Ting-He
    Zhang, Shao-Wu
    CURRENT BIOINFORMATICS, 2019, 14 (05) : 406 - 421
  • [9] Ensemble learning model for Protein-Protein interaction prediction with multiple Machine learning techniques
    Lai, Zhenghui
    Li, Mengshan
    Chen, Qianyong
    Gu, Yunlong
    Wang, Nan
    Guan, Lixin
    MEASUREMENT, 2025, 242
  • [10] Application of Machine Learning Approaches for Protein-protein Interactions Prediction
    Zhang, Mengying
    Su, Qiang
    Lu, Yi
    Zhao, Manman
    Niu, Bing
    MEDICINAL CHEMISTRY, 2017, 13 (06) : 506 - 514