Trait-based projections of climate change effects on global biome distributions

被引:33
作者
Boonman, Coline C. F. [1 ,2 ]
Huijbregts, Mark A. J. [1 ]
Benitez-Lopez, Ana [1 ,3 ]
Schipper, Aafke M. [1 ,4 ]
Thuiller, Wilfried [5 ]
Santini, Luca [1 ,6 ,7 ]
机构
[1] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Environm Sci, POB 9010, NL-6500 GL Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Aquat Ecol & Environm Biol, Nijmegen, Netherlands
[3] Estn Biol Donana EBD CSIC, Integrat Ecol Grp, Seville, Spain
[4] PBL Netherlands Environm Assessment Agcy, The Hague, Netherlands
[5] Univ Savoie Mt Blanc, Univ Grenoble Alpes, CNRS, Lab Ecol Alpine LECA,LECA, Grenoble, France
[6] Sapienza Univ Rome, Dept Biol & Biotechnol Charles Darwin, Rome, Italy
[7] CNR, Inst Res Terr Ecosyst CNR IRET, Rome, Italy
基金
欧洲研究理事会;
关键词
biome distribution; climate change; Gaussian mixture model; global vegetation; plant height; specific leaf area; traits-based model; wood density; FUTURE; MODELS; PREVALENCE; MECHANISM; CARBON;
D O I
10.1111/ddi.13431
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Aim Climate change will likely modify the global distribution of biomes, but the magnitude of change is debated. Here, we followed a trait-based, statistical approach to model the influence of climate change on the global distribution of biomes. Location Global. Methods We predicted the global distribution of plant community mean specific leaf area (SLA), height and wood density as a function of climate and soil characteristics using an ensemble of statistical models. Then, we predicted the probability of occurrence of biomes as a function of the three traits with a classification model. Finally, we projected changes in plant community mean traits and corresponding changes in biome distributions to 2070 for low (RCP 2.6; +1.2 degrees C) and extreme (RCP 8.5; +3.5 degrees C) future climate change scenarios. Results We estimated that under the low climate change scenario (sub)tropical biomes will expand (forest by 18%-22%, grassland by 9%-14% and xeric shrubland by 5%-8%), whereas tundra and temperate broadleaved and mixed forests contract by 30%-34% and 16%-21%, respectively. Our results also indicate that over 70%-75% of the current distribution of temperate broadleaved and mixed forests and temperate grasslands is projected to shift northwards. These changes become amplified under the extreme climate change scenario in which tundra is projected to lose more than half of its current extent. Main conclusions Our results indicate considerable imminent alterations in the global distribution of biomes, with possibly major consequences for life on Earth. The level of accuracy of our model given the limited input data and the insights on how trait-environment relationships can influence biome distributions suggest that trait-based correlative approaches are a promising tool to forecast vegetation change and to provide an independent, complementary line of evidence next to process-based vegetation models.
引用
收藏
页码:25 / 37
页数:13
相关论文
共 64 条
[1]   Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) [J].
Allouche, Omri ;
Tsoar, Asaf ;
Kadmon, Ronen .
JOURNAL OF APPLIED ECOLOGY, 2006, 43 (06) :1223-1232
[2]   Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models [J].
Alo, Clement Aga ;
Wang, Guiling .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2008, 113 (G1)
[3]  
[Anonymous], 2005, Ecosystems and human well-being: Desertification synthesis
[4]   Plant functional trait change across a warming tundra biome [J].
Bjorkman, Anne D. ;
Myers-Smith, Isla H. ;
Elmendorf, Sarah C. ;
Normand, Signe ;
Rueger, Nadja ;
Beck, Pieter S. A. ;
Blach-Overgaard, Anne ;
Blok, Daan ;
Cornelissen, J. Hans C. ;
Forbes, Bruce C. ;
Georges, Damien ;
Goetz, Scott J. ;
Guay, Kevin C. ;
Henry, Gregory H. R. ;
HilleRisLambers, Janneke ;
Hollister, Robert D. ;
Karger, Dirk N. ;
Kattge, Jens ;
Manning, Peter ;
Prevey, Janet S. ;
Rixen, Christian ;
Schaepman-Strub, Gabriela ;
Thomas, Haydn J. D. ;
Vellend, Mark ;
Wilmking, Martin ;
Wipf, Sonja ;
Carbognani, Michele ;
Hermanutz, Luise ;
Levesque, Esther ;
Molau, Ulf ;
Petraglia, Alessandro ;
Soudzilovskaia, Nadejda A. ;
Spasojevic, Marko J. ;
Tomaselli, Marcello ;
Vowles, Tage ;
Alatalo, Juha M. ;
Alexander, Heather D. ;
Anadon-Rosell, Alba ;
Angers-Blondin, Sandra ;
te Beest, Mariska ;
Berner, Logan ;
Bjork, Robert G. ;
Buchwal, Agata ;
Buras, Allan ;
Christie, Katherine ;
Cooper, Elisabeth J. ;
Dullinger, Stefan ;
Elberling, Bo ;
Eskelinen, Anu ;
Frei, Esther R. .
NATURE, 2018, 562 (7725) :57-+
[5]   The n-dimensional hypervolume [J].
Blonder, Benjamin ;
Lamanna, Christine ;
Violle, Cyrille ;
Enquist, Brian J. .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2014, 23 (05) :595-609
[6]   Climate change impacts on selected global rangeland ecosystem services [J].
Boone, Randall B. ;
Conant, Richard T. ;
Sircely, Jason ;
Thornton, Philip K. ;
Herrero, Mario .
GLOBAL CHANGE BIOLOGY, 2018, 24 (03) :1382-1393
[7]   Assessing the reliability of predicted plant trait distributions at the global scale [J].
Boonman, Coline C. F. ;
Benitez-Lopez, Ana ;
Schipper, Aafke M. ;
Thuiller, Wilfried ;
Anand, Madhur ;
Cerabolini, Bruno E. L. ;
Cornelissen, Johannes H. C. ;
Gonzalez-Melo, Andres ;
Hattingh, Wesley N. ;
Higuchi, Pedro ;
Laughlin, Daniel C. ;
Onipchenko, Vladimir G. ;
Penuelas, Josep ;
Poorter, Lourens ;
Soudzilovskaia, Nadejda A. ;
Huijbregts, Mark A. J. ;
Santini, Luca .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2020, 29 (06) :1034-1051
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Steal the light: shade vs fire adapted vegetation in forest-savanna mosaics [J].
Charles-Dominique, Tristan ;
Midgley, Guy F. ;
Tomlinson, Kyle W. ;
Bond, William J. .
NEW PHYTOLOGIST, 2018, 218 (04) :1419-1429
[10]   Towards a worldwide wood economics spectrum [J].
Chave, Jerome ;
Coomes, David ;
Jansen, Steven ;
Lewis, Simon L. ;
Swenson, Nathan G. ;
Zanne, Amy E. .
ECOLOGY LETTERS, 2009, 12 (04) :351-366