Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry

被引:14
|
作者
Moon, Sucbei [1 ]
Kim, Dug Young [1 ]
机构
[1] Gwangju Inst Sci & Technol, Dept Informat & Commun, Kwangju 500712, South Korea
来源
OPTICS EXPRESS | 2007年 / 15卷 / 23期
关键词
D O I
10.1364/OE.15.015129
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a new signal detection method that can effectively suppress the effect of relative intensity noise (RIN) in optical frequency-domain reflectometry or imaging (OFDR/OFDI) schemes to enhance the sensitivity and dynamic range. In this method, spectral interferogram signal is normalized digitally by a spectral reference signal that contains the real-time spectrum and the RIN information of the frequency-swept source. Unlike the conventional balanced detection method that suppresses only additive intensity noises, we found that our proposed scheme removes both the additive and convolutional contributions of the RINs in the final interferogram signals. Experimental demonstrations were performed using a stretched-pulse optical coherence tomography (SP-OCT) system where the high RIN of a supercontinuum source had been a serious drawback. We have experimentally verified the superiority of our proposed scheme in terms of its improved dynamic range in comparison to the balanced detection method. In addition, we have shown that the noise suppression performance is immune to the spectral imbalance characteristics of the optical components used in the system, whereas the common-mode noise rejection of the conventional balanced detection method is influenced by them. (c) 2007 Optical Society of America
引用
收藏
页码:15129 / 15146
页数:18
相关论文
共 50 条
  • [11] OPTICAL FREQUENCY-DOMAIN REFLECTOMETRY WITH HIGH-SENSITIVITY AND RESOLUTION USING OPTICAL SYNCHRONOUS DETECTION WITH CODED MODULATORS
    DOLFI, DW
    NAZARATHY, M
    ELECTRONICS LETTERS, 1989, 25 (02) : 160 - 162
  • [12] HIGH-RESOLUTION FREQUENCY-DOMAIN REFLECTOMETRY
    VANHAMME, H
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1990, 39 (02) : 369 - 375
  • [13] High-Speed Camera for Frequency Domain Imaging
    Srivastava, Abneesh
    Watt, David
    Faris, Gregory W.
    2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2007), VOLS 1-5, 2007, : 1543 - 1544
  • [14] Polarization effects in coherent optical frequency-domain reflectometry
    Mussi, G
    Stamp, P
    Gisin, N
    Passy, R
    vonderWeid, JP
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8 (11) : 1513 - 1515
  • [15] Optical frequency-domain reflectometry for microbend sensor demodulation
    Pierce, SG
    MacLean, A
    Culshaw, B
    APPLIED OPTICS, 2000, 39 (25) : 4569 - 4581
  • [16] Recent Advancements in Optical Frequency-Domain Reflectometry: A Review
    Qu, Shuai
    Xu, Yanping
    Huang, Sheng
    Sun, Maocheng
    Wang, Chen
    Shang, Ying
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 1707 - 1723
  • [17] Optical frequency-domain reflectometry for microbend sensor demodulation
    Pierce, S. Gareth
    MacLean, Alistair
    Culshaw, Brian
    Applied Optics, 2000, 39 (25): : 4569 - 4581
  • [18] Proposal of Brillouin optical frequency-domain reflectometry (BOFDR)
    Minardo, Aldo
    Bernini, Romeo
    Ruiz-Lombera, Ruben
    Mirapeix, Jesus
    Miguel Lopez-Higuera, Jose
    Zeni, Luigi
    OPTICS EXPRESS, 2016, 24 (26): : 29994 - 30001
  • [19] Real-Time Optical Frequency-Domain Reflectometry
    Park, Y.
    Ahn, T. -J.
    Kieffer, J. -C.
    Azana, J.
    2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2007), VOLS 1-5, 2007, : 665 - 666
  • [20] High Spatial Resolution Optical Frequency-Domain Reflectometry Using Wiener Deconvolution
    Lou, Yuyang
    Yin, Guolu
    Liu, Kaijun
    Zhang, Zeheng
    Li, Duidui
    Lu, Huafeng
    Zhu, Tao
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2025, 43 (07) : 3275 - 3281