Correlations in the thermodynamical theory of phase transitions of the second kind. III

被引:0
作者
Kanyuka, AK
Glukhov, VS
机构
[1] Stanford Univ, Stanford DNA STC, Palo Alto, CA 94304 USA
[2] Ukrainian Acad Sci, Inst Met Phys, UA-252680 Kiev, Ukraine
来源
PHYSICA A | 1998年 / 258卷 / 1-2期
关键词
phase transitions; critical exponents; phenomenology;
D O I
10.1016/S0378-4371(98)00226-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the frameworks of the geometrical approach developed earlier, the situation is considered when in the branch point of the zero-field curve the first non-vanishing derivatives of the Gibbs potential w.r.t., the order parameters are of the sixth order, and w.r.t. the "critical" correlation parameters are of the tenth order. The conditions are determined when a second-order phase transition is possible in the branch point of the zero-filed curve. The critical exponents obtained are alpha(1) = alpha(1)', = 0, alpha(2) = alpha(2') = -1/5, beta = 2/5, gamma = gamma' = 6/5, delta = 4, epsilon = 0. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:171 / 182
页数:12
相关论文
共 50 条
  • [31] Locality of temperature and correlations in the presence of non-zero-temperature phase transitions
    Hernandez-Santana, Senaida
    Molnar, Andras
    Gogolin, Christian
    Cirac, J. Ignacio
    Acin, Antonio
    NEW JOURNAL OF PHYSICS, 2021, 23 (07):
  • [32] Ginzburg-Landau equations and first and second order phase transitions
    Fabrizio, Mauro
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2006, 44 (8-9) : 529 - 539
  • [33] Amphiphilic second-order phase transitions determined through NMR
    Reilly, Teresa
    Mohamed, Mohamed I. H.
    Lehmann, Teresa E.
    Alvarado, Vladimir
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 268 : 647 - 657
  • [34] Phase Transitions in Nanoconfined Fluids: The Evidence from Simulation and Theory
    Cummings, Peter T.
    Docherty, Hugh
    Iacovella, Christopher R.
    Singh, Jayant K.
    AICHE JOURNAL, 2010, 56 (04) : 842 - 848
  • [35] Landau-Ginzburg theory of phase transitions in fractal systems
    Bak, Zygmunt
    PHASE TRANSITIONS, 2007, 80 (1-2) : 79 - 87
  • [36] Gradient theory of phase transitions with a rapidly oscillating forcing term
    Dirr, Nicolas
    Lucia, Marcello
    Novaga, Matteo
    ASYMPTOTIC ANALYSIS, 2008, 60 (1-2) : 29 - 59
  • [37] Landau theory for finite-time dynamical phase transitions
    Meibohm, Jan
    Esposito, Massimiliano
    NEW JOURNAL OF PHYSICS, 2023, 25 (02):
  • [38] Insights into phase transitions and entanglement from density functional theory
    Wei, Bo-Bo
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [39] Scaling Behaviour and Critical Phase Transitions in Integrated Information Theory
    Aguilera, Miguel
    ENTROPY, 2019, 21 (12)
  • [40] Structural phase transitions in BaTiO3 studied via Perturbed Angular Correlations
    Roth, J
    Uhrmacher, M
    de la Presa, P
    Ziegeler, L
    Lieb, KP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2000, 55 (1-2): : 242 - 246