Sparse Gauss-Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation

被引:113
|
作者
Jia, Bin [1 ]
Xin, Ming [1 ]
Cheng, Yang [1 ]
机构
[1] Mississippi State Univ, Dept Aerosp Engn, Starkville, MS 39762 USA
基金
美国国家科学基金会;
关键词
D O I
10.2514/1.52016
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A novel sparse Gauss-Hermite quadrature filter is proposed using a sparse-grid method for multidimensional numerical integration in the Bayesian estimation framework. The conventional Gauss-Hermite quadrature filter is computationally expensive for multidimensional problems, because the number of Gauss-Hermite quadrature points increases exponentially with the dimension. The number of sparse-grid points of the computationally efficient sparse Gauss-Hermite quadrature filter, however, increases only polynomially with the dimension. In addition, it is proven in this paper that the unscented Kalman filter using the suggested optimal parameter is a subset of the sparse Gauss-Hermite quadrature filter. The sparse Gauss-Hermite quadrature filter is therefore more flexible to use than the unscented Kalman filter in terms of the number of points and accuracy level, and it is more efficient than the conventional Gauss-Hermite quadrature filter. The application to the spacecraft attitude estimation problem demonstrates better performance of the sparse Gauss-Hermite quadrature filter in comparison with the extended Kalman filter, the cubature Kalman filter, and the unscented Kalman filter.
引用
收藏
页码:367 / 379
页数:13
相关论文
共 50 条
  • [21] Gauss-Hermite Quadrature Approximation for Estimation in Generalised Linear Mixed Models
    Jianxin Pan
    Robin Thompson
    Computational Statistics, 2003, 18 : 57 - 78
  • [22] Computational Guidance Using Sparse Gauss-Hermite Quadrature Differential Dynamic Programming
    He, Shaoming
    Shin, Hyo-Sang
    Tsourdos, Antonios
    IFAC PAPERSONLINE, 2019, 52 (12): : 13 - 18
  • [23] Gauss-Hermite Quadrature in Marginal Maximum Likelihood Estimation of Item Parameters
    Kim, Seock-Ho
    Bao, Yu
    Horan, Erin
    Kim, Meereem
    Cohen, Allan S.
    QUANTITATIVE PSYCHOLOGY RESEARCH, 2015, 140 : 43 - 58
  • [24] Conditional Gauss-Hermite Filtering With Application to Volatility Estimation
    Singer, Hermann
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2476 - 2481
  • [25] Optimized Gauss-Hermite Quadrature: A Refined Approach
    Meng, Haozhan
    PROCEEDINGS OF THE 2024 IEEE 10TH IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING, HPSC 2024, 2024, : 18 - 23
  • [26] Gauss-Hermite quadrature approximation for estimation in generalised linear mixed models
    Pan, JX
    Thompson, R
    COMPUTATIONAL STATISTICS, 2003, 18 (01) : 57 - 78
  • [27] ABSCISSAE AND WEIGHTS FOR THE GAUSS-HERMITE QUADRATURE FORMULA
    TAKEMASA, T
    COMPUTER PHYSICS COMMUNICATIONS, 1988, 48 (02) : 265 - 270
  • [28] SINS nonlinear initial alignment using Gauss-Hermite quadrature Kalman filter
    Ran, Changyan
    Cheng, Xianghong
    Wang, Haipeng
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2014, 44 (02): : 266 - 271
  • [29] Gaussian kernel quadrature at scaled Gauss-Hermite nodes
    Karvonen, Toni
    Sarkka, Simo
    BIT NUMERICAL MATHEMATICS, 2019, 59 (04) : 877 - 902
  • [30] Multimodal Nonlinear Filtering Using Gauss-Hermite Quadrature
    Saal, Hannes P.
    Heess, Nicolas M. O.
    Vijayakumar, Sethu
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 81 - 96