Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy

被引:21
|
作者
Yesilbudak, Mehmet [1 ]
机构
[1] Nevsehir Haci Bektas Veli Univ, Fac Engn & Architecture, Dept Elect & Elect Engn, TR-50300 Nevsehir, Turkey
关键词
photovoltaic system; diode circuit models; parameter extraction; grey wolf optimizer; multi neighbors learning; ARTIFICIAL BEE COLONY; BIOGEOGRAPHY-BASED OPTIMIZATION; FLOWER POLLINATION ALGORITHM; PARTICLE SWARM OPTIMIZATION; LAMBERT W-FUNCTION; 3 DIODE MODEL; SOLAR-CELLS; DIFFERENTIAL EVOLUTION; PV CELLS; IDENTIFICATION;
D O I
10.3390/en14185735
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the increase in the share of solar energy in the sustainable development, accurate parameter identification plays a significant role in designing optimal solar photovoltaic systems. For this purpose, this paper extensively implements and evaluates the grey wolf optimizer with a dimension learning-based hunting search strategy, an improved version of GWO named I-GWO, in the parameter extraction of photovoltaic cells and modules. According to the experimental results, the double-diode model leads to better fitness than the other diode models in representing the physical behaviors of both photovoltaic cells and photovoltaic modules. For further performance validation, firstly, the internal parameters extracted by the I-GWO algorithm and the corresponding output current data are compared with a number of widely-used parameter extraction methods in the literature. Then, the best goodness-of-fit results achieved by the I-GWO algorithm are evaluated considering many state-of-the-art metaheuristic algorithms in the literature. The accuracy measures including root mean squared error and sum of individual absolute errors show that I-GWO is fairly promising to be the efficient and valuable parameter extraction method for both photovoltaic cells and photovoltaic modules.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Improved Hybrid Grey Wolf Optimization Algorithm Based on Dimension Learning-Based Hunting Search Strategy
    Zhang, Chuanjing
    Liu, Huanlao
    Zhou, Qunlong
    Liu, Can
    IEEE ACCESS, 2023, 11 : 13738 - 13753
  • [2] A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models
    Long, Wen
    Cai, Shaohong
    Jiao, Jianjun
    Xu, Ming
    Wu, Tiebin
    ENERGY CONVERSION AND MANAGEMENT, 2020, 203
  • [3] Parameter Extraction of Three Diode Solar Photovoltaic Model Using Improved Grey Wolf Optimizer
    Ramadan, Abd-ElHady
    Kamel, Salah
    Khurshaid, Tahir
    Oh, Seung-Ryle
    Rhee, Sang-Bong
    SUSTAINABILITY, 2021, 13 (12)
  • [4] Parameter extraction of solar cell using intelligent grey wolf optimizer
    Saxena, Akash
    Sharma, Ashutosh
    Shekhawat, Shalini
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (01) : 167 - 183
  • [5] Parameter extraction of solar cell using intelligent grey wolf optimizer
    Akash Saxena
    Ashutosh Sharma
    Shalini Shekhawat
    Evolutionary Intelligence, 2022, 15 : 167 - 183
  • [6] Policy Iteration Reinforcement Learning-based control using a Grey Wolf Optimizer algorithm
    Zamfirache, Iuliu Alexandru
    Precup, Radu-Emil
    Roman, Raul-Cristian
    Petriu, Emil M.
    Information Sciences, 2022, 585 : 162 - 175
  • [7] Policy Iteration Reinforcement Learning-based control using a Grey Wolf Optimizer algorithm
    Zamfirache, Iuliu Alexandru
    Precup, Radu-Emil
    Roman, Raul-Cristian
    Petriu, Emil M.
    INFORMATION SCIENCES, 2022, 585 : 162 - 175
  • [8] Reinforcement learning-based comprehensive learning grey wolf optimizer for feature selection
    Hu, Zhengpeng
    Yu, Xiaobing
    APPLIED SOFT COMPUTING, 2023, 149
  • [9] Grey Wolf Optimizer Algorithm Based on Lens Imaging Learning Strategy
    Long W.
    Wu T.-B.
    Tang M.-Z.
    Xu M.
    Cai S.-H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (10): : 2148 - 2164
  • [10] Learning-Based Grey Wolf Optimizer for Stochastic Flexible Job Shop Scheduling
    Lin, Chengran
    Cao, Zhengcai
    Zhou, Mengchu
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (04) : 3659 - 3671