A weak solution to quasilinear elliptic problems with perturbed gradient

被引:27
作者
Azroul, Elhoussine [1 ]
Balaadich, Farah [1 ]
机构
[1] Fac Sci Dhar El Mehraz, Dept Math, BP 1796, Atlas, Fez, Morocco
关键词
Quasilinear elliptic systems; Weak solutions; Sobolev space; Young measure; DIVERGENCE FORM; EQUATIONS; SYSTEMS; REGULARITY;
D O I
10.1007/s12215-020-00488-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider weak solutions to the Dirichlet problem where {-div A(x, Du - Theta(u)) = f in Omega, u = 0 on partial derivative Omega, where Theta : R-m -> M-mxn is a continuous function assumed to satisfy a Lipschitz condition. Based on the theory of Young measures, we prove the existence result when f is an element of W--1,W-p' (Omega;R-m).
引用
收藏
页码:151 / 166
页数:16
相关论文
共 28 条
[11]   Nonuniformly elliptic energy integrals with p, q-growth [J].
Cupini, Giovanni ;
Marcellini, Paolo ;
Mascolo, Elvira .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 :312-324
[12]  
Cupini G, 2014, ADV DIFFERENTIAL EQU, V19, P693
[13]   ON THE HIGHER INTEGRABILITY OF THE GRADIENT OF WEAK SOLUTIONS OF CERTAIN DEGENERATE ELLIPTIC-SYSTEMS [J].
DIBENEDETTO, E ;
MANFREDI, J .
AMERICAN JOURNAL OF MATHEMATICS, 1993, 115 (05) :1107-1134
[14]  
Dreyfuss P., 2004, Int. J. Pure Appl. Math., V14, P241
[15]   Lipschitz estimates for systems with ellipticity conditions at infinity [J].
Eleuteri, Michela ;
Marcellini, Paolo ;
Mascolo, Elvira .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (05) :1575-1603
[16]   Quasi-linear parabolic systems in divergence form with weak monotonicity [J].
Hungerbühler, N .
DUKE MATHEMATICAL JOURNAL, 2001, 107 (03) :497-520
[17]  
HUNGERBUHLER N., 1999, New York J. Math, V5, P90
[18]  
Hungerbuhler N., 1997, N. Y. J. Math, V3, P48
[20]   THE NATURAL GENERALIZATION OF THE NATURAL CONDITIONS OF LADYZHENSKAYA AND URALTSEVA FOR ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (2-3) :311-361