A Cloud-Based Workflow Approach for Optimizing Molecular Docking Simulations of Fully-Flexible Receptor Models and Multiple Ligands
被引:0
作者:
De Paris, Renata
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio Grande do Sul, Fac Informat, Grp Pesquisa Inteligencia Negocio GPIN, Porto Alegre, RS, Brazil
Newcastle Univ, Sch Comp Sci, Newcastle Upon Tyne, Tyne & Wear, EnglandPontificia Univ Catolica Rio Grande do Sul, Fac Informat, Grp Pesquisa Inteligencia Negocio GPIN, Porto Alegre, RS, Brazil
De Paris, Renata
[1
,2
]
Ruiz, Duncan A. D.
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio Grande do Sul, Fac Informat, Grp Pesquisa Inteligencia Negocio GPIN, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Fac Informat, Grp Pesquisa Inteligencia Negocio GPIN, Porto Alegre, RS, Brazil
Ruiz, Duncan A. D.
[1
]
de Souza, Osmar Norberto
论文数: 0引用数: 0
h-index: 0
机构:
Fac Informat, Lab Bioinformat Modelagem & Simulacao Biossistema, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Fac Informat, Grp Pesquisa Inteligencia Negocio GPIN, Porto Alegre, RS, Brazil
de Souza, Osmar Norberto
[3
]
机构:
[1] Pontificia Univ Catolica Rio Grande do Sul, Fac Informat, Grp Pesquisa Inteligencia Negocio GPIN, Porto Alegre, RS, Brazil
[2] Newcastle Univ, Sch Comp Sci, Newcastle Upon Tyne, Tyne & Wear, England
[3] Fac Informat, Lab Bioinformat Modelagem & Simulacao Biossistema, Porto Alegre, RS, Brazil
来源:
2015 IEEE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM)
|
2015年
The use of conformations achieved from Molecular Dynamics (MD) simulations in docking experiments is the most accurate approach to simulate the natural interactions between receptor and ligands at molecular environments. However, such simulations are computational costly and their overall execution may become unfeasible due to the large quantities of structural information needed to represent a Fully-Flexible Receptor (FFR) model. The problem is even more challenging when FFR models are used to perform docking-based virtual screening in a large database of ligands. This study aims at developing a cloud-based workflow to efficiently optimize docking experiments between a FFR model and multiple ligands in two strategic ways: by discarding groups of unpromising MD conformations for specific ligands at docking execution time, and by exploiting on-demand resources from the Microsoft Azure cloud platform. The proposed environment is built on e-Science Central, which is a powerful cloud-based workflow enactment system designed to handle scientific high-throughput tasks. As a result, we expect to reduce the number of docking experiments per ligand without affecting the quality of the produced models and, therefore, considerably decreasing the time consumed by docking experiments.
机构:
Pontificia Univ Catel Rio Grande Sul PUCRS, Fac Informat, GPIN, BR-90619900 Porto Alegre, RS, BrazilPontificia Univ Catel Rio Grande Sul PUCRS, Fac Informat, GPIN, BR-90619900 Porto Alegre, RS, Brazil
Quevedo, Christian Vahl
De Paris, Renata
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catel Rio Grande Sul PUCRS, Fac Informat, GPIN, BR-90619900 Porto Alegre, RS, BrazilPontificia Univ Catel Rio Grande Sul PUCRS, Fac Informat, GPIN, BR-90619900 Porto Alegre, RS, Brazil
De Paris, Renata
Ruiz, Duncan D.
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catel Rio Grande Sul PUCRS, Fac Informat, GPIN, BR-90619900 Porto Alegre, RS, BrazilPontificia Univ Catel Rio Grande Sul PUCRS, Fac Informat, GPIN, BR-90619900 Porto Alegre, RS, Brazil
Ruiz, Duncan D.
de Souza, Osmar Norberto
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio Grande do Sul, Fac Informat, Lab Bioinformat Modelagem & Simulacao Biossistema, BR-90619900 Porto Alegre, RS, BrazilPontificia Univ Catel Rio Grande Sul PUCRS, Fac Informat, GPIN, BR-90619900 Porto Alegre, RS, Brazil
机构:
Pontificia Univ Catolica Rio Grande do Sul, Sch Technol, Business Intelligence & Machine Learning Res Grp, Av Ipiranga 6681,Bldg 32,Room 628, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Sch Technol, Business Intelligence & Machine Learning Res Grp, Av Ipiranga 6681,Bldg 32,Room 628, Porto Alegre, RS, Brazil
De Paris, Renata
Quevedo, Christian Vahl
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio Grande do Sul, Sch Technol, Business Intelligence & Machine Learning Res Grp, Av Ipiranga 6681,Bldg 32,Room 628, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Sch Technol, Business Intelligence & Machine Learning Res Grp, Av Ipiranga 6681,Bldg 32,Room 628, Porto Alegre, RS, Brazil
Quevedo, Christian Vahl
Ruiz, Duncan D.
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio Grande do Sul, Sch Technol, Business Intelligence & Machine Learning Res Grp, Av Ipiranga 6681,Bldg 32,Room 628, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Sch Technol, Business Intelligence & Machine Learning Res Grp, Av Ipiranga 6681,Bldg 32,Room 628, Porto Alegre, RS, Brazil
Ruiz, Duncan D.
Gargano, Furia
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio Grande do Sul, Sch Technol, Bioinformat & Biossyst Modeling & Simulat Lab LAB, Av Ipiranga 6681,Bldg 32,Room 628, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Sch Technol, Business Intelligence & Machine Learning Res Grp, Av Ipiranga 6681,Bldg 32,Room 628, Porto Alegre, RS, Brazil
Gargano, Furia
de Souza, Osmar Norberto
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio Grande do Sul, Sch Technol, Bioinformat & Biossyst Modeling & Simulat Lab LAB, Av Ipiranga 6681,Bldg 32,Room 628, Porto Alegre, RS, BrazilPontificia Univ Catolica Rio Grande do Sul, Sch Technol, Business Intelligence & Machine Learning Res Grp, Av Ipiranga 6681,Bldg 32,Room 628, Porto Alegre, RS, Brazil