Phylogenomics provides robust support for a two-domains tree of life

被引:157
作者
Williams, Tom A. [1 ]
Cox, Cymon J. [2 ]
Foster, Peter G. [3 ]
Szollosi, Gergely J. [4 ,5 ,6 ]
Embley, T. Martin [7 ]
机构
[1] Univ Bristol, Sch Biol Sci, Bristol, Avon, England
[2] Univ Algarve, Ctr Ciencias Mar, Faro, Portugal
[3] Nat Hist Museum, Dept Life Sci, London, England
[4] MTA ELTE Lendulet Evolutionary Genom Res Grp, Budapest, Hungary
[5] Eotvos Lorand Univ, Dept Biol Phys, Budapest, Hungary
[6] Hungarian Acad Sci, Ctr Ecol Res, Evolutionary Syst Res Grp, Tihany, Hungary
[7] Univ Newcastle, Inst Cell & Mol Biosci, Newcastle Upon Tyne, Tyne & Wear, England
基金
英国自然环境研究理事会; 欧洲研究理事会;
关键词
UNIVERSAL TREE; MIXTURE MODEL; DATA SETS; ORIGIN; EVOLUTION; GENE; EUKARYOTES; ARCHAEA; ROOT; RNA;
D O I
10.1038/s41559-019-1040-x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Hypotheses about the origin of eukaryotic cells are classically framed within the context of a universal 'tree of life' based on conserved core genes. Vigorous ongoing debate about eukaryote origins is based on assertions that the topology of the tree of life depends on the taxa included and the choice and quality of genomic data analysed. Here we have reanalysed the evidence underpinning those claims and apply more data to the question by using supertree and coalescent methods to interrogate >3,000 gene families in archaea and eukaryotes. We find that eukaryotes consistently originate from within the archaea in a two-domains tree when due consideration is given to the fit between model and data. Our analyses support a close relationship between eukaryotes and Asgard archaea and identify the Heimdallarchaeota as the current best candidate for the closest archaeal relatives of the eukaryotic nuclear lineage. The evolutionary origin of eukaryotes is under debate. Here, the authors conduct phylogenetic analyses using >3,000 gene families in archaea and eukaryotes and find support for an origin of eukaryotes from within the archaea.
引用
收藏
页码:138 / 147
页数:10
相关论文
共 91 条
[1]   Implementing and testing Bayesian and maximum-likelihood supertree methods in phylogenetics [J].
Akanni, Wasiu A. ;
Wilkinson, Mark ;
Creevey, Christopher J. ;
Foster, Peter G. ;
Pisani, Davide .
ROYAL SOCIETY OPEN SCIENCE, 2015, 2 (08)
[2]  
Altenhoff AM, 2016, NAT METHODS, V13, P425, DOI [10.1038/nmeth.3830, 10.1038/NMETH.3830]
[3]   A review of long-branch attraction [J].
Bergsten, J .
CLADISTICS, 2005, 21 (02) :163-193
[4]   Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin [J].
Betts, Holly C. ;
Puttick, Mark N. ;
Clark, James W. ;
Williams, Tom A. ;
Donoghue, Philip C. J. ;
Pisani, Davide .
NATURE ECOLOGY & EVOLUTION, 2018, 2 (10) :1556-1562
[5]   Bayesian model adequacy and choice in phylogenetics [J].
Bollback, JP .
MOLECULAR BIOLOGY AND EVOLUTION, 2002, 19 (07) :1171-1180
[6]   Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? [J].
Brochier, C ;
Gribaldo, S ;
Zivanovic, Y ;
Confalonieri, F ;
Forterre, P .
GENOME BIOLOGY, 2005, 6 (05)
[7]   Archaeal phylogeny based on proteins of the transcription and translation machineries:: tackling the Methanopyrus kandleri paradox -: art. no. R17 [J].
Brochier, C ;
Forterre, P ;
Gribaldo, S .
GENOME BIOLOGY, 2004, 5 (03)
[8]   ROOT OF THE UNIVERSAL TREE OF LIFE BASED ON ANCIENT AMINOACYL-TRANSFER-RNA SYNTHETASE GENE DUPLICATIONS [J].
BROWN, JR ;
DOOLITTLE, WF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (07) :2441-2445
[9]   EARLY EVOLUTION OF THE EUKARYOTA [J].
Butterfield, Nicholas J. .
PALAEONTOLOGY, 2015, 58 (01) :5-17
[10]   An evolutionarily structured universe of protein architecture [J].
Caetano-Anollés, G ;
Caetano-Anollés, D .
GENOME RESEARCH, 2003, 13 (07) :1563-1571