Accelerated Additive Schwarz Methods for Convex Optimization with Adaptive Restart

被引:5
作者
Park, Jongho [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Nat Sci Res Inst, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Additive Schwarz method; Acceleration; Adaptive restart; Convex optimization; DOMAIN DECOMPOSITION METHODS; OSHER-FATEMI MODEL; CONVERGENCE RATE; 1ST-ORDER METHODS; MINIMIZATION;
D O I
10.1007/s10915-021-01648-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on an observation that additive Schwarz methods for general convex optimization can be interpreted as gradient methods, we propose an acceleration scheme for additive Schwarz methods. Adopting acceleration techniques developed for gradient methods such as momentum and adaptive restarting, the convergence rate of additive Schwarz methods is greatly improved. The proposed acceleration scheme does not require any a priori information on the levels of smoothness and sharpness of a target energy functional, so that it can be applied to various convex optimization problems. Numerical results for linear elliptic problems, nonlinear elliptic problems, nonsmooth problems, and nonsharp problems are provided to highlight the superiority and the broad applicability of the proposed scheme.
引用
收藏
页数:20
相关论文
共 50 条
[31]   Inertial accelerated primal-dual methods for linear equality constrained convex optimization problems [J].
He, Xin ;
Hu, Rong ;
Fang, Ya-Ping .
NUMERICAL ALGORITHMS, 2022, 90 (04) :1669-1690
[32]   ACCELERATED METHODS FOR NONCONVEX OPTIMIZATION [J].
Carmon, Yair ;
Duchi, John C. ;
Hinder, Oliver ;
Sidford, Aaron .
SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) :1751-1772
[33]   Applications of accelerated computational methods for quasi-nonexpansive operators to optimization problems [J].
Sahu, D. R. .
SOFT COMPUTING, 2020, 24 (23) :17887-17911
[34]   An inexact accelerated stochastic ADMM for separable convex optimization [J].
Bai, Jianchao ;
Hager, William W. ;
Zhang, Hongchao .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 81 (02) :479-518
[35]   Robustness of Accelerated First-Order Algorithms for Strongly Convex Optimization Problems [J].
Mohammadi, Hesameddin ;
Razaviyayn, Meisam ;
Jovanovic, Mihailo R. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (06) :2480-2495
[36]   MATRIX ANALYSIS ON LEADING TERM OF CONDITION NUMBER FOR ADDITIVE SCHWARZ METHODS [J].
Jia-chang Sun (R & D Center of Paraller Software ;
Laboratory for Computer Science ;
Institute of Software ;
Chinese Academy of Sciences) .
Journal of Computational Mathematics, 2001, (02) :157-166
[37]   Accelerated Meta-Algorithm for Convex Optimization Problems [J].
A. V. Gasnikov ;
D. M. Dvinskikh ;
P. E. Dvurechensky ;
D. I. Kamzolov ;
V. V. Matyukhin ;
D. A. Pasechnyuk ;
N. K. Tupitsa ;
A. V. Chernov .
Computational Mathematics and Mathematical Physics, 2021, 61 :17-28
[38]   Accelerated Meta-Algorithm for Convex Optimization Problems [J].
Gasnikov, A., V ;
Dvinskikh, D. M. ;
Dvurechensky, P. E. ;
Kamzolov, D., I ;
Matyukhin, V. V. ;
Pasechnyuk, D. A. ;
Tupitsa, N. K. ;
Chernov, A., V .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (01) :17-28
[39]   MULTILEVEL SPACE-TIME ADDITIVE SCHWARZ METHODS FOR PARABOLIC EQUATIONS [J].
Li, Shishun ;
Shao, Xinping ;
Cai, Xiao-Chuan .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05) :A3012-A3037
[40]   Matrix analysis on leading term of condition number for additive Schwarz methods [J].
Sun, JC .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (02) :157-166