Essential role of microglial transforming growth factor-β1 in antidepressant actions of (R)-ketamine and the novel antidepressant TGF-β1

被引:100
作者
Zhang, Kai [1 ,5 ]
Yang, Chun [1 ,6 ]
Chang, Lijia [1 ]
Sakamoto, Akemi [2 ]
Suzuki, Toru [3 ]
Fujita, Yuko [1 ]
Qu, Youge [1 ]
Wang, Siming [1 ]
Pu, Yaoyu [1 ]
Tan, Yunfei [1 ]
Wang, Xingming [1 ]
Ishima, Tamaki [1 ]
Shirayama, Yukihiko [1 ,4 ]
Hatano, Masahiko [2 ]
Tanaka, Kenji F. [3 ]
Hashimoto, Kenji [1 ]
机构
[1] Chiba Univ, Ctr Forens Mental Hlth, Div Clin Neurosci, Chiba 2608670, Japan
[2] Chiba Univ, Grad Sch Med, Dept Biomed Sci, Chiba 2608670, Japan
[3] Keio Univ, Sch Med, Dept Neuropsychiat, Tokyo 1608585, Japan
[4] Teikyo Univ, Chiba Med Ctr, Dept Psychiat, Chiba 2990111, Japan
[5] Anhui Med Univ, Chaohu Hosp, Dept Psychiat, Hefei 238000, Peoples R China
[6] Nanjing Med Univ, Affiliated Hosp 1, Dept Anesthesiol & Perioperat Med, Nanjing 210029, Peoples R China
关键词
D-ASPARTATE ANTAGONIST; SUSTAINED ANTIDEPRESSANT; INTRAVENOUS KETAMINE; BIPOLAR DEPRESSION; SUICIDAL THOUGHTS; MAJOR DEPRESSION; RAPID REDUCTION; RECEPTOR; BRAIN; EFFICACY;
D O I
10.1038/s41398-020-0733-x
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
In rodent models of depression, (R)-ketamine has greater potency and longer-lasting antidepressant effects than (S)-ketamine; however, the precise molecular mechanisms underlying the antidepressant actions of (R)-ketamine remain unknown. Using RNA-sequencing analysis, we identified novel molecular targets that contribute to the different antidepressant effects of the two enantiomers. Either (R)-ketamine (10 mg/kg) or (S)-ketamine (10 mg/kg) was administered to susceptible mice after chronic social defeat stress (CSDS). RNA-sequencing analysis of prefrontal cortex (PFC) and subsequent GSEA (gene set enrichment analysis) revealed that transforming growth factor (TGF)-beta signaling might contribute to the different antidepressant effects of the two enantiomers. (R)-ketamine, but not (S)-ketamine, ameliorated the reduced expressions of Tgfb1 and its receptors (Tgfbr1 and Tgfbr2) in the PFC and hippocampus of CSDS susceptible mice. Either pharmacological inhibitors (i.e., RepSox and SB431542) or neutralizing antibody of TGF-beta 1 blocked the antidepressant effects of (R)-ketamine in CSDS susceptible mice. Moreover, depletion of microglia by the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX3397 blocked the antidepressant effects of (R)-ketamine in CSDS susceptible mice. Similar to (R)-ketamine, the recombinant TGF-beta 1 elicited rapid and long-lasting antidepressant effects in animal models of depression. Our data implicate a novel microglial TGF-beta 1-dependent mechanism underlying the antidepressant effects of (R)-ketamine in rodents with depression-like phenotype. Moreover, TGF-beta 1 and its receptor agonists would likely constitute a novel rapid-acting and sustained antidepressant in humans.
引用
收藏
页数:12
相关论文
共 62 条
[21]  
KIEFER R, 1995, INT J DEV NEUROSCI, V13, P331
[22]   Single-dose infusion ketamine and non-ketamine N-methyl-D-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories [J].
Kishimoto, T. ;
Chawla, J. M. ;
Hagi, K. ;
Zarate, C. A., Jr. ;
Kane, J. M. ;
Bauer, M. ;
Correll, C. U. .
PSYCHOLOGICAL MEDICINE, 2016, 46 (07) :1459-1472
[23]   Ketamine: A Paradigm Shift for Depression Research and Treatment [J].
Krystal, John H. ;
Abdallah, Chadi G. ;
Sanacora, Gerard ;
Charney, Dennis S. ;
Duman, Ronald S. .
NEURON, 2019, 101 (05) :774-778
[24]   Contribution of microglial reaction to increased nociceptive responses in high-fat-diet (HFD)-induced obesity in male mice [J].
Liang, Ya-Jing ;
Feng, Shi-Yang ;
Qi, Ya-Ping ;
Li, Kai ;
Jin, Zi-Run ;
Jing, Hong-Bo ;
Liu, Ling-Yu ;
Cai, Jie ;
Xing, Guo-Gang ;
Fu, Kai-Yuan .
BRAIN BEHAVIOR AND IMMUNITY, 2019, 80 :777-792
[25]   Antidepressant effects of combination of brexpiprazole and fluoxetine on depression-like behavior and dendritic changes in mice after inflammation [J].
Ma, Min ;
Ren, Qian ;
Yang, Chun ;
Zhang, Ji-chun ;
Yao, Wei ;
Dong, Chao ;
Ohgi, Yuta ;
Futamura, Takashi ;
Hashimoto, Kenji .
PSYCHOPHARMACOLOGY, 2017, 234 (04) :525-533
[26]   Intranasally delivered TGF-β1 enters brain and regulates gene expressions of its receptors in rats [J].
Ma, Yu-Ping ;
Ma, Min-Min ;
Ge, Song ;
Guo, Rui-Bing ;
Zhang, Hua-Jun ;
Frey, William H., II ;
Xu, Ge-Lin ;
Liu, Xin-Feng .
BRAIN RESEARCH BULLETIN, 2007, 74 (04) :271-277
[27]   EFFECT OF KETAMINE, AN NMDA RECEPTOR INHIBITOR, IN ACUTE AND CHRONIC OROFACIAL PAIN [J].
MATHISEN, LC ;
SKJELBRED, P ;
SKOGLUND, LA ;
OYE, I .
PAIN, 1995, 61 (02) :215-220
[28]   Social stress induces neurovascular pathology promoting depression [J].
Menard, Caroline ;
Pfau, Madeline L. ;
Hodes, Georgia E. ;
Kana, Veronika ;
Wang, Victoria X. ;
Bouchard, Sylvain ;
Takahashi, Aki ;
Flanigan, Meghan E. ;
Aleyasin, Hossein ;
LeClair, Katherine B. ;
Janssen, William G. ;
Labonte, Benoit ;
Parise, Eric M. ;
Lorsch, Zachary S. ;
Golden, Sam A. ;
Heshmati, Mitra ;
Tamminga, Carol ;
Turecki, Gustavo ;
Campbell, Matthew ;
Fayad, Zahi A. ;
Tang, Cheuk Ying ;
Merad, Miriam ;
Russo, Scott J. .
NATURE NEUROSCIENCE, 2017, 20 (12) :1752-+
[29]   Antidepressant actions of ketamine: from molecular mechanisms to clinical practice [J].
Monteggia, Lisa M. ;
Zarate, Carlos, Jr. .
CURRENT OPINION IN NEUROBIOLOGY, 2015, 30 :139-143
[30]   Ketamine for rapid reduction of suicidal ideation: a randomized controlled trial [J].
Murrough, J. W. ;
Soleimani, L. ;
DeWilde, K. E. ;
Collins, K. A. ;
Lapidus, K. A. ;
Iacoviello, B. M. ;
Lener, M. ;
Kautz, M. ;
Kim, J. ;
Stern, J. B. ;
Price, R. B. ;
Perez, A. M. ;
Brallier, J. W. ;
Rodriguez, G. J. ;
Goodman, W. K. ;
Iosifescu, D. V. ;
Charney, D. S. .
PSYCHOLOGICAL MEDICINE, 2015, 45 (16) :3571-3580