Offspring production from cryopreserved primordial germ cells in Drosophila

被引:2
作者
Asaoka, Miho [1 ]
Sakamaki, Yurina [2 ]
Fukumoto, Tatsuya [3 ]
Nishimura, Kaori [4 ]
Tomaru, Masatoshi [4 ]
Takano-Shimizu, Toshiyuki [4 ]
Tanaka, Daisuke [3 ]
Kobayashi, Satoru [1 ,2 ]
机构
[1] Univ Tsukuba, Life Sci Ctr Survival Dynam, Tsukuba Adv Res Alliance TARA, Tsukuba, Ibaraki 3058577, Japan
[2] Univ Tsukuba, Grad Sch Life & Environm Sci, Tsukuba, Ibaraki 3058572, Japan
[3] Natl Agr & Food Res Org NARO, Res Ctr Genet Resources, Tsukuba, Ibaraki 3058602, Japan
[4] Kyoto Inst Technol, Adv Insect Res Promot Ctr, Kyoto 6168354, Japan
基金
日本学术振兴会;
关键词
GENE; PRESERVATION; LINE; MELANOGASTER; EXPRESSION; REGION; NANOS; EGGS; SEX;
D O I
10.1038/s42003-021-02692-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Asaoka, Sakamaki, Fukumoto et al. present a more viable method of long-term storage of Drosophila fly strains by cryopreservation of primordial germ cells (PGCs) without any drop in viability. The authors show that PGCs from stage 5 embryos can be transplanted into embryos and properly developed into germline stem cells to produce offspring of both sexes after being revived from storage in liquid nitrogen. There is an urgent need to cryopreserve Drosophila stocks that have been maintained as living cultures for a long time. Long-term culture increases the risk of accidental loss and of unwanted genetic alteration. Here, we report that cryopreserved primordial germ cells (PGCs) can produce F1 progeny when transplanted into hosts. The cryopreserved donor PGCs could form germline stem cells in host gonads and contributed to continuous offspring production. Furthermore, the ability to produce offspring did not appear to vary with either differences between donor strains or cryopreservation duration. Therefore, we propose that our cryopreservation method is feasible for long-term storage of various Drosophila strains. These results underscore the potential usefulness of our cryopreservation method for backing up living stocks to avoid either accidental loss or genetic alteration.
引用
收藏
页数:7
相关论文
共 31 条
[1]  
[Anonymous], 2016, NIH WORKSH CRYOPRESE
[2]   Germline stem cells in the Drosophila ovary descend from pole cells in the anterior region of the embryonic gonad [J].
Asaoka, M ;
Lin, HF .
DEVELOPMENT, 2004, 131 (20) :5079-5089
[3]   Maternal Nanos inhibits Importin-2/Pendulin-dependent nuclear import to prevent somatic gene expression in the Drosophila germline [J].
Asaoka, Miho ;
Hanyu-Nakamura, Kazuko ;
Nakamura, Akira ;
Kobayashi, Satoru .
PLOS GENETICS, 2019, 15 (05)
[4]   Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos [J].
Asaoka-Taguchi, M ;
Yamada, M ;
Nakamura, A ;
Hanyu, K ;
Kobayashi, S .
NATURE CELL BIOLOGY, 1999, 1 (07) :431-437
[5]   Advances in Engineering the Fly Genome with the CRISPR-Cas System [J].
Bier, Ethan ;
Harrison, Melissa M. ;
O'Connor-Giles, Kate M. ;
Wildonger, Jill .
GENETICS, 2018, 208 (01) :1-18
[6]   An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases [J].
Bischof, Johannes ;
Maeda, Robert K. ;
Hediger, Monika ;
Karch, Francois ;
Basler, Konrad .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (09) :3312-3317
[7]  
BRUSCHWE.W, 1973, EXPERIENTIA, V29, P134
[8]  
Campos-Ortega J., 1997, EMBRYONIC DEV DROSOP
[9]  
Cohen SM., 1993, DEV DROSOPHILA MELAN
[10]   FREEZE-THAW SURVIVAL OF FREE-LIVING NEMATODE CAENORHABDITIS-BRIGGSAE [J].
HAIGHT, M ;
FRIM, J ;
PASTERNAK, J ;
FREY, H .
CRYOBIOLOGY, 1975, 12 (05) :497-505