DeMoCap: Low-Cost Marker-Based Motion Capture

被引:28
作者
Chatzitofis, Anargyros [1 ,2 ]
Zarpalas, Dimitrios [2 ]
Daras, Petros [2 ]
Kollias, Stefanos [1 ]
机构
[1] Natl Tech Univ Athens, Zografou Campus 9, Athens 15780, Greece
[2] Ctr Res & Technol Hellas, 6th Km Charilaou Thermi, Thessaloniki 57001, Greece
关键词
Motion capture; Low-cost; Marker-based; Depth-based; Pose regression; Multi-view;
D O I
10.1007/s11263-021-01526-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical marker-based motion capture (MoCap) remains the predominant way to acquire high-fidelity articulated body motions. We introduce DeMoCap, the first data-driven approach for end-to-end marker-based MoCap, using only a sparse setup of spatio-temporally aligned, consumer-grade infrared-depth cameras. Trading off some of their typical features, our approach is the sole robust option for far lower-cost marker-based MoCap than high-end solutions. We introduce an end-to-end differentiable markers-to-pose model to solve a set of challenges such as under-constrained position estimates, noisy input data and spatial configuration invariance. We simultaneously handle depth and marker detection noise, label and localize the markers, and estimate the 3D pose by introducing a novel spatial 3D coordinate regression technique under a multi-view rendering and supervision concept. DeMoCap is driven by a special dataset captured with 4 spatio-temporally aligned low-cost Intel RealSense D415 sensors and a 24 MXT40S camera professional MoCap system, used as input and ground truth, respectively.
引用
收藏
页码:3338 / 3366
页数:29
相关论文
共 64 条
[51]   Integral Human Pose Regression [J].
Sun, Xiao ;
Xiao, Bin ;
Wei, Fangyin ;
Liang, Shuang ;
Wei, Yichen .
COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 :536-553
[52]   Robust Keypoint Regression [J].
Tensmeyer, Chris ;
Martinez, Tony .
2019 INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION WORKSHOPS (ICDARW), VOL 5, 2019, :1-7
[53]  
Tompson J, 2014, ADV NEUR IN, V27
[54]  
Toshev A., 2014, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2014.214
[55]   VoxelPose: Towards Multi-camera 3D Human Pose Estimation in Wild Environment [J].
Tu, Hanyue ;
Wang, Chunyu ;
Zeng, Wenjun .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :197-212
[56]  
VICON, 1984, VICON SYSTEMS LTD
[57]   Adaptive Neural Control of a Class of Stochastic Nonlinear Uncertain Systems With Guaranteed Transient Performance [J].
Wang, Jianhui ;
Liu, Zhi ;
Zhang, Yun ;
Chen, C. L. Philip ;
Lai, Guanyu .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) :2971-2981
[58]   Convolutional Pose Machines [J].
Wei, Shih-En ;
Ramakrishna, Varun ;
Kanade, Takeo ;
Sheikh, Yaser .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :4724-4732
[59]  
YANG Y, 2011, PROC CVPR IEEE, P1385, DOI DOI 10.1109/CVPR.2011.5995741
[60]  
Ying, 2011, SFU MOTION CAPTURE D