DeMoCap: Low-Cost Marker-Based Motion Capture

被引:28
作者
Chatzitofis, Anargyros [1 ,2 ]
Zarpalas, Dimitrios [2 ]
Daras, Petros [2 ]
Kollias, Stefanos [1 ]
机构
[1] Natl Tech Univ Athens, Zografou Campus 9, Athens 15780, Greece
[2] Ctr Res & Technol Hellas, 6th Km Charilaou Thermi, Thessaloniki 57001, Greece
关键词
Motion capture; Low-cost; Marker-based; Depth-based; Pose regression; Multi-view;
D O I
10.1007/s11263-021-01526-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical marker-based motion capture (MoCap) remains the predominant way to acquire high-fidelity articulated body motions. We introduce DeMoCap, the first data-driven approach for end-to-end marker-based MoCap, using only a sparse setup of spatio-temporally aligned, consumer-grade infrared-depth cameras. Trading off some of their typical features, our approach is the sole robust option for far lower-cost marker-based MoCap than high-end solutions. We introduce an end-to-end differentiable markers-to-pose model to solve a set of challenges such as under-constrained position estimates, noisy input data and spatial configuration invariance. We simultaneously handle depth and marker detection noise, label and localize the markers, and estimate the 3D pose by introducing a novel spatial 3D coordinate regression technique under a multi-view rendering and supervision concept. DeMoCap is driven by a special dataset captured with 4 spatio-temporally aligned low-cost Intel RealSense D415 sensors and a 24 MXT40S camera professional MoCap system, used as input and ground truth, respectively.
引用
收藏
页码:3338 / 3366
页数:29
相关论文
共 64 条
[41]  
Paszke A, 2019, ADV NEUR IN, V32
[42]  
Pavllo Dario, 2018, BRIT MACH VIS C 2018, DOI [10.1109/HUMANOIDS.2018.8624922, DOI 10.1109/HUMANOIDS.2018.8624922]
[43]  
Perepichka M, 2019, PROCEEDINGS OF THE 12TH ACM SIGGRAPH CONFERENCE ON MOTION, INTERACTION AND GAMES, MIG 2019, DOI [10.1007/s40670-019-00706-4, 10.1145/3359566.3360060]
[44]  
Qi CR, 2017, ADV NEUR IN, V30
[45]   Cross View Fusion for 3D Human Pose Estimation [J].
Qiu, Haibo ;
Wang, Chunyu ;
Wang, Jingdong ;
Wang, Naiyan ;
Zeng, Wenjun .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4341-4350
[46]   Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation [J].
Rhodin, Helge ;
Salzmann, Mathieu ;
Fua, Pascal .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :765-782
[47]   OctNet: Learning Deep 3D Representations at High Resolutions [J].
Riegler, Gernot ;
Ulusoy, Ali Osman ;
Geiger, Andreas .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6620-6629
[48]  
RUEGG N, 2020, ARXIV PREPRINT ARXIV
[49]   Loose-limbed People: Estimating 3D Human Pose and Motion Using Non-parametric Belief Propagation [J].
Sigal, Leonid ;
Isard, Michael ;
Haussecker, Horst ;
Black, Michael J. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 98 (01) :15-48
[50]   A low-cost, flexible and portable volumetric capturing system [J].
Sterzentsenko, Vladimiros ;
Karakottas, Antonis ;
Papachristou, Alexandros ;
Zioulis, Nikolaos ;
Doumanoglou, Alexandros ;
Zarpalas, Dimitrios ;
Daras, Petros .
2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS), 2018, :200-207