DeMoCap: Low-Cost Marker-Based Motion Capture

被引:28
作者
Chatzitofis, Anargyros [1 ,2 ]
Zarpalas, Dimitrios [2 ]
Daras, Petros [2 ]
Kollias, Stefanos [1 ]
机构
[1] Natl Tech Univ Athens, Zografou Campus 9, Athens 15780, Greece
[2] Ctr Res & Technol Hellas, 6th Km Charilaou Thermi, Thessaloniki 57001, Greece
关键词
Motion capture; Low-cost; Marker-based; Depth-based; Pose regression; Multi-view;
D O I
10.1007/s11263-021-01526-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical marker-based motion capture (MoCap) remains the predominant way to acquire high-fidelity articulated body motions. We introduce DeMoCap, the first data-driven approach for end-to-end marker-based MoCap, using only a sparse setup of spatio-temporally aligned, consumer-grade infrared-depth cameras. Trading off some of their typical features, our approach is the sole robust option for far lower-cost marker-based MoCap than high-end solutions. We introduce an end-to-end differentiable markers-to-pose model to solve a set of challenges such as under-constrained position estimates, noisy input data and spatial configuration invariance. We simultaneously handle depth and marker detection noise, label and localize the markers, and estimate the 3D pose by introducing a novel spatial 3D coordinate regression technique under a multi-view rendering and supervision concept. DeMoCap is driven by a special dataset captured with 4 spatio-temporally aligned low-cost Intel RealSense D415 sensors and a 24 MXT40S camera professional MoCap system, used as input and ground truth, respectively.
引用
收藏
页码:3338 / 3366
页数:29
相关论文
共 64 条
[1]   Real-time labeling of non-rigid motion capture marker sets [J].
Alexanderson, Simon ;
O'Sullivan, Carol ;
Beskow, Jonas .
COMPUTERS & GRAPHICS-UK, 2017, 69 :59-67
[2]  
Bascones, 2019, THESIS U PAIS VASCO
[3]  
Bekhtaoui W., 2020, ARXIV PREPRINT ARXIV
[4]   Evaluating the Impact of Color Information in Deep Neural Networks [J].
Buhrmester, Vanessa ;
Muench, David ;
Bulatov, Dimitri ;
Arens, Michael .
PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 :302-316
[5]   3D Pictorial Structures for Multiple View Articulated Pose Estimation [J].
Burenius, Magnus ;
Sullivan, Josephine ;
Carlsson, Stefan .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :3618-3625
[6]   Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields [J].
Cao, Zhe ;
Simon, Tomas ;
Wei, Shih-En ;
Sheikh, Yaser .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1302-1310
[7]   HUMAN4D: A Human-Centric Multimodal Dataset for Motions and Immersive Media [J].
Chatzitofis, Anargyros ;
Saroglou, Leonidas ;
Boutis, Prodromos ;
Drakoulis, Petros ;
Zioulis, Nikolaos ;
Subramanyam, Shishir ;
Kevelham, Bart ;
Charbonnier, Caecilia ;
Cesar, Pablo ;
Zarpalas, Dimitrios ;
Kollias, Stefanos ;
Daras, Petros .
IEEE ACCESS, 2020, 8 :176241-176262
[8]   DeepMoCap: Deep Optical Motion Capture Using Multiple Depth Sensors and Retro-Reflectors [J].
Chatzitofis, Anargyros ;
Zarpalas, Dimitrios ;
Kollias, Stefanos ;
Daras, Petros .
SENSORS, 2019, 19 (02)
[9]  
Cheng B., 2019, ARXIV PREPRINT ARXIV
[10]   HOPE-Net: A Graph-based Model for Hand-Object Pose Estimation [J].
Doosti, Bardia ;
Naha, Shujon ;
Mirbagheri, Majid ;
Crandall, David J. .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :6607-6616