DeMoCap: Low-Cost Marker-Based Motion Capture

被引:20
作者
Chatzitofis, Anargyros [1 ,2 ]
Zarpalas, Dimitrios [2 ]
Daras, Petros [2 ]
Kollias, Stefanos [1 ]
机构
[1] Natl Tech Univ Athens, Zografou Campus 9, Athens 15780, Greece
[2] Ctr Res & Technol Hellas, 6th Km Charilaou Thermi, Thessaloniki 57001, Greece
关键词
Motion capture; Low-cost; Marker-based; Depth-based; Pose regression; Multi-view;
D O I
10.1007/s11263-021-01526-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical marker-based motion capture (MoCap) remains the predominant way to acquire high-fidelity articulated body motions. We introduce DeMoCap, the first data-driven approach for end-to-end marker-based MoCap, using only a sparse setup of spatio-temporally aligned, consumer-grade infrared-depth cameras. Trading off some of their typical features, our approach is the sole robust option for far lower-cost marker-based MoCap than high-end solutions. We introduce an end-to-end differentiable markers-to-pose model to solve a set of challenges such as under-constrained position estimates, noisy input data and spatial configuration invariance. We simultaneously handle depth and marker detection noise, label and localize the markers, and estimate the 3D pose by introducing a novel spatial 3D coordinate regression technique under a multi-view rendering and supervision concept. DeMoCap is driven by a special dataset captured with 4 spatio-temporally aligned low-cost Intel RealSense D415 sensors and a 24 MXT40S camera professional MoCap system, used as input and ground truth, respectively.
引用
收藏
页码:3338 / 3366
页数:29
相关论文
共 64 条
  • [1] Real-time labeling of non-rigid motion capture marker sets
    Alexanderson, Simon
    O'Sullivan, Carol
    Beskow, Jonas
    [J]. COMPUTERS & GRAPHICS-UK, 2017, 69 : 59 - 67
  • [2] Bascones, 2019, THESIS U PAIS VASCO
  • [3] Bekhtaoui W., 2020, ARXIV PREPRINT ARXIV
  • [4] Evaluating the Impact of Color Information in Deep Neural Networks
    Buhrmester, Vanessa
    Muench, David
    Bulatov, Dimitri
    Arens, Michael
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 302 - 316
  • [5] 3D Pictorial Structures for Multiple View Articulated Pose Estimation
    Burenius, Magnus
    Sullivan, Josephine
    Carlsson, Stefan
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 3618 - 3625
  • [6] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
    Cao, Zhe
    Simon, Tomas
    Wei, Shih-En
    Sheikh, Yaser
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1302 - 1310
  • [7] HUMAN4D: A Human-Centric Multimodal Dataset for Motions and Immersive Media
    Chatzitofis, Anargyros
    Saroglou, Leonidas
    Boutis, Prodromos
    Drakoulis, Petros
    Zioulis, Nikolaos
    Subramanyam, Shishir
    Kevelham, Bart
    Charbonnier, Caecilia
    Cesar, Pablo
    Zarpalas, Dimitrios
    Kollias, Stefanos
    Daras, Petros
    [J]. IEEE ACCESS, 2020, 8 (08): : 176241 - 176262
  • [8] DeepMoCap: Deep Optical Motion Capture Using Multiple Depth Sensors and Retro-Reflectors
    Chatzitofis, Anargyros
    Zarpalas, Dimitrios
    Kollias, Stefanos
    Daras, Petros
    [J]. SENSORS, 2019, 19 (02)
  • [9] HOPE-Net: A Graph-based Model for Hand-Object Pose Estimation
    Doosti, Bardia
    Naha, Shujon
    Mirbagheri, Majid
    Crandall, David J.
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6607 - 6616
  • [10] Elhayek A, 2015, PROC CVPR IEEE, P3810, DOI 10.1109/CVPR.2015.7299005