Impact of a high-speed train of microdrops on a liquid pool

被引:22
作者
Bouwhuis, Wilco [1 ,2 ]
Huang, Xin [3 ,4 ]
Chan, Chon U. [3 ]
Frommhold, Philipp E. [5 ]
Ohl, Claus-Dieter [3 ]
Lohse, Detlef [1 ,2 ,6 ]
Snoeijer, Jacco H. [1 ,2 ,7 ]
van der Meer, Devaraj [1 ,2 ]
机构
[1] Univ Twente, Mesa Inst, Phys Fluids Grp, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, JM Burgers Ctr Fluid Dynam, NL-7500 AE Enschede, Netherlands
[3] Nanyang Technol Univ, Div Phys & Appl Phys, Cavitat Lab, Singapore 637371, Singapore
[4] Natl Univ Singapore, Dept Mech Engn, Fluid Mech Labs, Singapore 117575, Singapore
[5] Univ Gottingen, Inst Phys 3, Christian Doppler Lab Cavitat & Microeros, D-37077 Gottingen, Germany
[6] Max Planck Inst Dynam & Self Org, D-37077 Gottingen, Germany
[7] Eindhoven Univ Technol, Mesoscop Transport Phenomena, NL-5612 AZ Eindhoven, Netherlands
关键词
drops; drops and bubbles; microfluidics; INVISCID COALESCENCE; DROP IMPACT; ENTRAINMENT; ENTRAPMENT; DYNAMICS; BUBBLES;
D O I
10.1017/jfm.2016.105
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A train of high-speed microdrops impacting on a liquid pool can create a very deep and narrow cavity, reaching depths more than 1000 times the size of the individual drops. The impact of such a droplet train is studied numerically using boundary integral simulations. In these simulations, we solve the potential flow in the pool and in the impacting drops, taking into account the influence of liquid inertia, gravity and surface tension. We show that for microdrops the cavity shape and maximum depth primarily depend on the balance of inertia and surface tension and discuss how these are influenced by the spacing between the drops in the train. Finally, we derive simple scaling laws for the cavity depth and width.
引用
收藏
页码:850 / 868
页数:19
相关论文
共 47 条
[1]   Water entry of small hydrophobic spheres [J].
Aristoff, Jeffrey M. ;
Bush, John W. M. .
JOURNAL OF FLUID MECHANICS, 2009, 619 :45-78
[2]   Nonstandard Inkjets [J].
Basaran, Osman A. ;
Gao, Haijing ;
Bhat, Pradeep P. .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 45, 2013, 45 :85-113
[3]   Giant bubble pinch-off [J].
Bergmann, R ;
van der Meer, D ;
Stijnman, M ;
Sandtke, M ;
Prosperetti, A ;
Lohse, D .
PHYSICAL REVIEW LETTERS, 2006, 96 (15)
[4]   Controlled impact of a disk on a water surface: cavity dynamics [J].
Bergmann, Raymond ;
van der Meer, Devaraj ;
Gekle, Stephan ;
van der Bos, Arjan ;
Lohse, Detlef .
JOURNAL OF FLUID MECHANICS, 2009, 633 :381-409
[5]   Bubble formation via multidrop impacts [J].
Bick, Alexander G. ;
Ristenpart, William D. ;
van Nierop, Ernst A. ;
Stone, Howard A. .
PHYSICS OF FLUIDS, 2010, 22 (04) :1-6
[6]   Surface-tension-driven flow outside a slender wedge with an application to the inviscid coalescence of drops [J].
Billingham, J ;
King, AC .
JOURNAL OF FLUID MECHANICS, 2005, 533 :193-221
[7]   Initial surface deformations during impact on a liquid pool [J].
Bouwhuis, Wilco ;
Hendrix, Maurice H. W. ;
van der Meer, Devaraj ;
Snoeijer, Jacco H. .
JOURNAL OF FLUID MECHANICS, 2015, 771 :503-519
[8]   Oscillating and star-shaped drops levitated by an airflow [J].
Bouwhuis, Wilco ;
Winkels, Koen G. ;
Peters, Ivo R. ;
Brunet, Philippe ;
van der Meer, Devaraj ;
Snoeijer, Jacco H. .
PHYSICAL REVIEW E, 2013, 88 (02)
[9]   Maximal Air Bubble Entrainment at Liquid-Drop Impact [J].
Bouwhuis, Wilco ;
van der Veen, Roeland C. A. ;
Tuan Tran ;
Keij, Diederik L. ;
Winkels, Koen G. ;
Peters, Ivo R. ;
van der Meer, Devaraj ;
Sun, Chao ;
Snoeijer, Jacco H. ;
Lohse, Detlef .
PHYSICAL REVIEW LETTERS, 2012, 109 (26)
[10]   On the controlled production of sprays with discrete polydisperse drop size spectra [J].
Brenn, G .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (22) :5437-5444