Electronic properties of disordered zigzag carbon nanotubes

被引:1
作者
Rezania, Hamed [1 ]
机构
[1] Razi Univ, Dept Phys, Kermanshah, Iran
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2015年 / 29卷 / 05期
关键词
Carbon nanotube; Green's function; chemical potential; RAMAN CHARACTERIZATION; BORON; NITROGEN; EMISSION; GRAPHENE;
D O I
10.1142/S0217979215500204
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study the density of states of zigzag carbon nanotube (CNT) doped with both Boron and nitrogen atoms as donor and acceptor impurities, respectively. The effect of scattering of the electrons on the electronic spectrum of the system can be obtained via adding random on-site energy term to the tight binding model Hamiltonian which describes the clean system. Green's function approach has been implemented to find the behavior of electronic density. Due to Boron (Nitrogen) doping, Fermi surface tends to the valence (conduction) band of semiconductor CNT so that the energy gap width reduces. Furthermore the density of states of disordered metallic zigzag CNTs includes a peak near the Fermi energy.
引用
收藏
页数:9
相关论文
共 31 条
  • [21] Phase diagram and magnetic collective excitations of the Hubbard model for graphene sheets and layers -: art. no. 195122
    Peres, NMR
    Araújo, MAN
    Bozi, D
    [J]. PHYSICAL REVIEW B, 2004, 70 (19): : 1 - 12
  • [22] ELECTRONIC-STRUCTURE OF CHIRAL GRAPHENE TUBULES
    SAITO, R
    FUJITA, M
    DRESSELHAUS, G
    DRESSELHAUS, MS
    [J]. APPLIED PHYSICS LETTERS, 1992, 60 (18) : 2204 - 2206
  • [23] DOPING GRAPHITIC AND CARBON NANOTUBE STRUCTURES WITH BORON AND NITROGEN
    STEPHAN, O
    AJAYAN, PM
    COLLIEX, C
    REDLICH, P
    LAMBERT, JM
    BERNIER, P
    LEFIN, P
    [J]. SCIENCE, 1994, 266 (5191) : 1683 - 1685
  • [24] Room-temperature transistor based on a single carbon nanotube
    Tans, SJ
    Verschueren, ARM
    Dekker, C
    [J]. NATURE, 1998, 393 (6680) : 49 - 52
  • [25] Novel nanotubes and encapsulated nanowires
    Terrones, M
    Hsu, WK
    Schilder, A
    Terrones, H
    Grobert, N
    Hare, JP
    Zhu, YQ
    Schwoerer, M
    Prassides, K
    Kroto, HW
    Walton, DRM
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (03): : 307 - 317
  • [26] Pyrolytically grown BxCyNz nanomaterials: Nanofibres and nanotubes
    Terrones, M
    Benito, AM
    MantecaDiego, C
    Hsu, WK
    Osman, OI
    Hare, JP
    Reid, DG
    Terrones, H
    Cheetham, AK
    Prassides, K
    Kroto, HW
    Walton, DRM
    [J]. CHEMICAL PHYSICS LETTERS, 1996, 257 (5-6) : 576 - 582
  • [27] SYNTHESIS OF BXCYNZ NANOTUBULES
    WENGSIEH, Z
    CHERREY, K
    CHOPRA, NG
    BLASE, X
    MIYAMOTO, Y
    RUBIO, A
    COHEN, ML
    LOUIE, SG
    ZETTL, A
    GRONSKY, R
    [J]. PHYSICAL REVIEW B, 1995, 51 (16): : 11229 - 11232
  • [28] Wilshire J. G., 2005, PHYS REV B, V72
  • [29] Hydrogen Passivation Induced Dispersion of Multi-Walled Carbon Nanotubes
    Yang, Yingchao
    Xu, Zhi-Hui
    Pan, Zhengwei
    Li, Xiaodong
    [J]. ADVANCED MATERIALS, 2012, 24 (07) : 881 - +
  • [30] Semiconducting boron carbonitride nanostructures: Nanotubes and nanofibers
    Yu, J
    Ahn, J
    Yoon, SF
    Zhang, Q
    Rusli
    Gan, B
    Chew, K
    Yu, MB
    Bai, XD
    Wang, EG
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (13) : 1949 - 1951