A(alpha)-matrix;
The k-th largest A(alpha)-eigenvalue;
The smallest A(alpha)-eigenvalue;
SIGNLESS LAPLACIAN;
EIGENVALUE;
D O I:
10.1016/j.laa.2018.07.003
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G be a graph with adjacency matrix A(G) and let D(G) be the diagonal matrix of the degrees of G. For any real alpha is an element of [0, 1], Nikiforov [8] defined the matrix A(alpha) (G) as A(alpha )(G) = alpha D(G) + (1 - alpha) A(G). In this paper, we give some results on the eigenvalues of A(alpha)(G) for alpha > 1/2. In particular, we characterize the graphs with lambda(k) (A(alpha)(G)) = alpha n - 1 for 2 <= k <= n. Moreover, we show that lambda(n) (A(alpha)(G)) >= 2 alpha - 1 if G contains no isolated vertices. (C) 2018 Elsevier Inc. All rights reserved.
机构:
College of Computer Science and Technology, Harbin Engineering University, Harbin,150001, ChinaCollege of Computer Science and Technology, Harbin Engineering University, Harbin,150001, China
Bu, Tianyi
Huang, Shaobin
论文数: 0引用数: 0
h-index: 0
机构:
College of Computer Science and Technology, Harbin Engineering University, Harbin,150001, ChinaCollege of Computer Science and Technology, Harbin Engineering University, Harbin,150001, China
机构:
Qinghai Normal Univ, Dept Math, Xining 810008, Qinghai, Peoples R ChinaQinghai Normal Univ, Dept Math, Xining 810008, Qinghai, Peoples R China
Wang, Jianfeng
Shi, Shuning
论文数: 0引用数: 0
h-index: 0
机构:
Qinghai Normal Univ, Human Resources Dept, Xining 810008, Qinghai, Peoples R ChinaQinghai Normal Univ, Dept Math, Xining 810008, Qinghai, Peoples R China
机构:
Zhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Zhejiang, Peoples R ChinaZhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Zhejiang, Peoples R China
Cui, Shu-Yu
Tian, Gui-Xian
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R ChinaZhejiang Normal Univ, Xingzhi Coll, Jinhua 321004, Zhejiang, Peoples R China