共 50 条
On the Aα-spectra of graphs
被引:43
|作者:
Lin, Huiqiu
[1
]
Xue, Jie
[2
]
Shu, Jinlong
[2
]
机构:
[1] East China Univ Sci & Technol, Dept Math, Shanghai, Peoples R China
[2] East China Normal Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
基金:
中国国家自然科学基金;
关键词:
A(alpha)-matrix;
The k-th largest A(alpha)-eigenvalue;
The smallest A(alpha)-eigenvalue;
SIGNLESS LAPLACIAN;
EIGENVALUE;
D O I:
10.1016/j.laa.2018.07.003
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G be a graph with adjacency matrix A(G) and let D(G) be the diagonal matrix of the degrees of G. For any real alpha is an element of [0, 1], Nikiforov [8] defined the matrix A(alpha) (G) as A(alpha )(G) = alpha D(G) + (1 - alpha) A(G). In this paper, we give some results on the eigenvalues of A(alpha)(G) for alpha > 1/2. In particular, we characterize the graphs with lambda(k) (A(alpha)(G)) = alpha n - 1 for 2 <= k <= n. Moreover, we show that lambda(n) (A(alpha)(G)) >= 2 alpha - 1 if G contains no isolated vertices. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:210 / 219
页数:10
相关论文