Evolution of ecotoxicity upon Fenton's oxidation of phenol in water

被引:127
作者
Zazo, J. A. [1 ]
Casas, J. A. [1 ]
Molina, C. B. [1 ]
Quintanilla, A. [1 ]
Rodriguez, J. J. [1 ]
机构
[1] Univ Autonoma Madrid, E-28049 Madrid, Spain
关键词
D O I
10.1021/es071063l
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work deals with the evolution of intermediates and ecotoxicity upon Fenton's oxidation of phenol in aqueous solution. The EC50 values of the intermediates identified in the oxidation pathway of phenol have been measured. Some of these compounds, mainly hydroquinone and p-benzoquinone, showed toxicity levels much higher than phenol itself. Depending on the operating conditions, these intermediates could be completely transformed into organic acids, mainly oxalic and formic. Ecotoxicity values substantially lower than those expected from the chemical composition were measured in the reaction samples. This is explained by a reduction of the concentration of aromatic intermediates when the pH was adjusted at 6-8 (according to what is required by the standard bioassay ISO 11348-3). Formation of complexes between hydroquinone and p-benzoquinone at increasing pH can remove from solution those highly toxic intermediates whose very low EC50 values give rise to a high ecotoxicity even at fairly low concentrations. This together with the enhanced decomposition of residual H2O2 at increasing pH represent important beneficial effects of the neutralization step following Fenton treatment which allow a complementary cleaning of the effluent.
引用
收藏
页码:7164 / 7170
页数:7
相关论文
共 35 条
[1]   Effects of ozonation on the biodegradability of substituted phenols [J].
Adams, CD ;
Cozzens, RA ;
Kim, BJ .
WATER RESEARCH, 1997, 31 (10) :2655-2663
[2]   Advanced oxidation processes (AOP) for water purification and recovery [J].
Andreozzi, R ;
Caprio, V ;
Insola, A ;
Marotta, R .
CATALYSIS TODAY, 1999, 53 (01) :51-59
[3]  
[Anonymous], 2001, P EST ACAD SCI CHEM, V50, P59, DOI DOI 10.1002/CHIN.200141291
[4]   Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent [J].
Azbar, N ;
Yonar, T ;
Kestioglu, K .
CHEMOSPHERE, 2004, 55 (01) :35-43
[5]   Mechanism and kinetics of oxidation of 2,4,6-trichlorophenol by Fenton's reagent [J].
Basu, S ;
Wei, IW .
ENVIRONMENTAL ENGINEERING SCIENCE, 2000, 17 (05) :279-290
[6]   Use of Fenton reagent to improve organic chemical biodegradability [J].
Chamarro, E ;
Marco, A ;
Esplugas, S .
WATER RESEARCH, 2001, 35 (04) :1047-1051
[7]   Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds [J].
Chen, RZ ;
Pignatello, JJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (08) :2399-2406
[8]   Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV and Fe(II) or Fe(III)/H2O2 [J].
De Laat, J ;
Gallard, H ;
Ancelin, S ;
Legube, B .
CHEMOSPHERE, 1999, 39 (15) :2693-2706
[9]   Colorimetric determination of hydrogen peroxide [J].
Eisenberg, GM .
INDUSTRIAL AND ENGINEERING CHEMISTRY-ANALYTICAL EDITION, 1943, 15 :327-328
[10]   Comparison of different advanced oxidation processes for phenol degradation [J].
Esplugas, S ;
Giménez, J ;
Contreras, S ;
Pascual, E ;
Rodríguez, M .
WATER RESEARCH, 2002, 36 (04) :1034-1042