LORENTZ HYPERSURFACES IN E14 SATISFYING Δ(H)over-right-arrow = α(H)over-right-arrow

被引:36
作者
Arvanitoyeorgos, A. [1 ]
Kaimakamis, G. [2 ]
Magid, M. [3 ]
机构
[1] Univ Patras, Dept Math, GR-26500 Rion, Greece
[2] Hellen Army Acad, GR-16673 Vari, Attica, Greece
[3] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
关键词
MINKOWSKI SPACE; SUBMANIFOLDS; TIME;
D O I
10.1215/ijm/1266934794
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A hypersurface M-1(3) in the four-dimensional pseudo-Euclidean space E-1(4) is called a Lorentz hypersurface if its normal vector is space-like. We show that if the mean curvature vector field of M-1(3) satisfies the equation Delta(H) over right arrow = alpha(H) over right arrow (alpha a constant), then M-1(3) has constant mean curvature. This equation is a natural generalization of the biharmonic submanifold equation Delta(H) over right arrow = (0) over right arrow.
引用
收藏
页码:581 / 590
页数:10
相关论文
共 19 条
[1]  
[Anonymous], COLLOQ MATH
[2]   Biharmonic Lorentz hypersurfaces in E14 [J].
Arvanitoyeorgos, Andreas ;
Defever, Filip ;
Kaimakamis, George ;
Papantoniou, Vassilis J. .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (02) :293-305
[3]   Hypersurfaces of E48 with proper mean curvature vector [J].
Arvanitoyeorgos, Andreas ;
Defever, Filip ;
Kaimakamis, George .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (03) :797-809
[4]  
Chen B.-Y., 1991, Soochow J. Math., V17, P169
[5]  
Chen B.Y., 1988, Kodai Math. J., V11, P295
[6]  
Chen B.-Y., 1991, Memoirs Fac. Sci. Kyushu Univ. Ser. A, Math., V45, P323
[7]   SUBMANIFOLDS IN DE SITTER SPACE-TIME SATISFYING DELTA-H=LAMBDA-H [J].
CHEN, BY .
ISRAEL JOURNAL OF MATHEMATICS, 1995, 91 (1-3) :373-391
[8]   SOME CLASSIFICATION-THEOREMS FOR SUBMANIFOLDS IN MINKOWSKI SPACE-TIME [J].
CHEN, BY .
ARCHIV DER MATHEMATIK, 1994, 62 (02) :177-182
[9]  
CHEN BY, 1988, P S HON CS HSU KS SH, P1
[10]  
CHEN BY, 1994, TAMKANG J MATH, V25, P71